Name:

Be sure to show your work!

$$\begin{array}{rcl} x & = & \rho\cos(\theta)\sin(\varphi) & J = \rho^2\sin(\varphi) \\ y & = & \rho\sin(\theta)\sin(\varphi) \\ z & = & \rho\cos(\varphi) & \cos^2(\theta) = \frac{1}{2}\left(1+\cos(2\theta)\right) \end{array}$$

1. (____/14 points) Consider
$$\int_0^4 \int_{\sqrt{x}}^2 \sin(y^3) \, dy \, dx$$
.

Sketch the region of integration and then **evaluate** the integral. Hint: $\int \sin(y^3) dy$ is impossible to evaluate.

2. (____/14 points) Consider the integral
$$\iint_R (2x+y)\cos(3x-y)\,dA$$
 where R is bounded by $y=-2x$, $y=-2x+1$, $y=3x-2$, and $y=3x-3$. State a change of coordinates: $u=???$ and $v=???$ so that the resulting integral can be evaluated. Perform the change of coordinates, but do **not** evaluate the integral.

3. (____/15 points) Consider the integral: $I = \int_{-4}^{4} \int_{-\sqrt{16-x^2}}^{0} \int_{-\sqrt{16-x^2-y^2}}^{0} 5x \, dz \, dy \, dx$.

- (a) Rewrite I in the following order of integration: $\iiint dx dz dy$. Do **not** evaluate the integral.
- (b) Rewrite I in terms of cylindrical coordinates. Do **not** evaluate the integral.
- (c) Rewrite I in terms of spherical coordinates. Do **not** evaluate the integral.
- 4. (____/14 points) Find the centroid of the region E where E is bounded below by $z=x^2+y^2$ and above by $z=8-x^2-y^2$. Hint: Use symmetry to cut down the number of integrals you need to evaluate. You should find the following fact useful: The volume of E is 16π .

$$m = \iiint_E 1 \, dV$$
 $M_{yz} = \iiint_E x \, dV$ $M_{xz} = \iiint_E y \, dV$ $M_{xy} = \iiint_E z \, dV$

5. (_____/14 points) Evaluate $\iiint_E x \, dV$ where E is bounded by x = 0, y = 0, z = 0, and x + y + z = 1.

6. (____/14 points) Evaluate $\iiint\limits_E \sqrt{x^2+y^2+z^2}\,dV$ where E is the region in the first octant (i.e. $x,y,z\geq 0$) which is outside $x^2+y^2+z^2=1$ and inside $x^2+y^2+z^2=4$.

- 7. (____/15 points) A few vector fields.
- (a) One of the following vectors fields is conservative and the other is not. Circle the conservative vector field and then find a potential function, f(x, y).

$$\mathbf{F}(x,y) = \langle x^2 + y^2, x^2 + y \rangle$$
 $\mathbf{F}(x,y) = \langle 2xy + 6x + 1, x^2 + \cos(y) \rangle$

(b) Compute $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ where $\mathbf{F}(x, y, z) = \langle 2xyz, x^2z + z + 2, x^2y + y \rangle$. Is \mathbf{F} conservative?

(c) Compute $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ where $\mathbf{F}(x, y, z) = \langle x^2 + y, y^2 + x, e^{yz} \rangle$. Is \mathbf{F} conservative?

(d) Of the vectors fields from (b) and (c), one is conservative. Find a potential function for it.