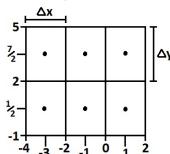
y = 0

Name: ANSWER KEY

Be sure to show your work!

1. (14 points) Use a double Riemann sum to approximate $\iint y^2 e^{-x} dA$ where $R = [-4, 2] \times [-1, 5]$.

Use midpoint rule and a 3×2 grid of rectangles (3 across and 2 up) to partition R.



We have $-4 \le x \le 2$ is to be partitioned into 3 pieces so that $\Delta x = \frac{2 - (-4)}{3} = 2$ and

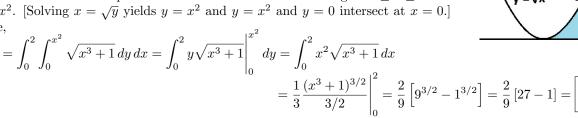
 $-1 \le y \le 5$ is to be partitioned into 2 pieces so that $\Delta y = \frac{5 - (-1)}{2} = 3$. The picture to the left sums up the partition information.

$$\iint_R y^2 e^{-x} dA \approx 2 \cdot 3 \cdot \left[\left(\frac{1}{2} \right)^2 e^3 + \left(\frac{1}{2} \right)^2 e^1 + \left(\frac{1}{2} \right)^2 e^{-1} + \left(\frac{7}{2} \right)^2 e^3 + \left(\frac{7}{2} \right)^2 e^1 + \left(\frac{7}{2} \right)^2 e^{-1} \right]$$

2. (14 points) First, sketch the region of integration and then evaluate $\int_0^4 \int_{-\pi}^2 \sqrt{x^3 + 1} \, dx \, dy$.

Hint: $\int \sqrt{x^3+1} dx$ cannot be expressed in terms of elementary functions – that is – you can't integrate it.

The bounds tell us that the region of integration is defined by $0 \le y \le 4$ and $\sqrt{y} \le x \le 2$. This is the region in the xy-plane which lies to the right of $x = \sqrt{y}$, the left of x = 2, above y=0, and below y=4. [Notice that when y=4, $x=\sqrt{4}=2$ on the curve $x=\sqrt{y}$. Our sketch then helps us see that this is the same as the region $0 \le x \le 2$ and $0 \le y \le x^2$. [Solving $x = \sqrt{y}$ yields $y = x^2$ and $y = x^2$ and y = 0 intersect at x = 0.] Therefore,



3. (14 points) Find the centroid of $R = \{(x,y) \mid x^2 + y^2 \le 9 \text{ and } x \ge 0\}$ (the right-half of the disk of radius 3 centered at the origin). Feel free to use what you know about areas of circles and symmetry to cut down the number of integrals you need to evaluate.

 $m = \text{area of half a circle} = \frac{1}{2}\pi \cdot 3^2 = \frac{9\pi}{2}$ and

Obviously, polar coordinates are the best choice for integrating over half of a circle. Since this is the right half, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Also, $x^2 + y^2 = r^2 \le 9$ so $0 \le r \le 3$. The constant bounds and fact that we can factor the function being integrated allow us to factor the iterated integral.

$$M_y = \iint_R x \, dA = \int_{-\pi/2}^{\pi/2} \int_0^3 r \cos(\theta) \cdot r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \cos(\theta) \, d\theta \int_0^3 r^2 \, dr = 2 \cdot \left[\frac{1}{3} r^3 \right]_0^3 = 2 \left[9 - 0 \right] = 18$$

Thus $\bar{x} = \frac{18}{9\pi/2} = \frac{4}{\pi}$. Therefore, $\left| (\bar{x}, \bar{y}) = \left(\frac{4}{\pi}, 0 \right) \right|$.

4. (15 points) Consider the integral: $I = \int_{-5}^{5} \int_{0}^{\sqrt{25-x^2}} \int_{-\sqrt{25-x^2-y^2}}^{0} y + 3 dz dy dx$.

(a) Rewrite I in the following order of integration: \iiint dx dz duDo **not** evaluate the integral.

$$\int_0^5 \int_{-\sqrt{25-y^2}}^0 \int_{-\sqrt{25-y^2-z^2}}^{\sqrt{25-y^2-z^2}} (y+3) \, dx \, dz \, dy$$

(b) Rewrite I in terms of cylindrical coordinates. Do **not** evaluate the integral.

 $\int_{0}^{\pi} \int_{0}^{5} \int_{-\sqrt{25-r^2}}^{0} (r\sin(\theta) + 3)r \, dz \, dr \, d\theta$

(c) Rewrite I in terms of spherical coordinates. Do **not** evaluate the integral.

$$\int_0^{\pi} \int_{\pi/2}^{\pi} \int_0^5 (\rho \sin(\theta) \sin(\varphi) + 3) \rho^2 \sin(\varphi) \, d\rho \, d\varphi \, d\theta$$

5. (14 points) Consider the double integral $\iint_R \frac{-2x+y}{x+3y} dA$ where R is bounded by the lines y=2x+1, y=2x+5, $y=-\frac{1}{3}x+1$, and $y=-\frac{1}{3}x+2$. Use the change of variables u=-2x+y and v=x+3y to rewrite the double integral as an iterated integral (with order of integration $du\ dv$). Don't forget the Jacobian!!! **Do not evaluate this integral!**

Notice that the lines y=2x+1 and y=2x+5 could be re-expressed as u=-2x+y=1 and u=-2x+y=5. Also, $y=-\frac{1}{3}x+1$ and $y=-\frac{1}{3}x+2$ can be re-expressed as v=x+3y=3 and v=x+3y=6. Thus our new bounds are $1 \le u \le 5$ and 3 < v < 6. Also,

and $3 \le v \le 6$. Also, $J^{-1} = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} -2 & 1 \\ 1 & 3 \end{vmatrix} = (-2)3 - 1(1) = -7$ so that $J = \frac{\partial(x,y)}{\partial(u,v)} = -\frac{1}{7}$

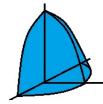
Alternatively, we could solve for x and y: u+2v=(-2x+y)+2(x+3y)=7y and -3u+v=-3(-2x+y)+(x+3y)=7x so that $x=\frac{-3}{7}u+\frac{1}{7}v$ and $y=\frac{1}{7}u+\frac{2}{7}v$. These equations can then be used to translate the bounds from the xy-plane to the uv-plane. For example: y=2x+1 becomes $\frac{1}{7}u+\frac{2}{7}v=2\left(\frac{-3}{7}u+\frac{1}{7}v\right)+1$ so u+2v=-6u+2v+7 and so 7u=7 thus u=1. Also, we can compute the Jacobian determinant directly: $J=\frac{\partial(x,y)}{\partial(u,v)}=\left|\frac{-3}{\frac{7}{7}}\frac{1}{\frac{7}{7}}\right|=\frac{-3}{7}\left(\frac{2}{7}\right)-\frac{1}{7}\left(\frac{1}{7}\right)=-\frac{6}{49}-\frac{1}{49}=-\frac{1}{7}$

Of course, the first technique is quite a bit easier. Finally, notice that $\frac{-2x+y}{x+3y} = \frac{u}{v}$. Therefore,

$$\iint_R \frac{-2x+y}{x+3y} \, dA = \int_3^6 \int_1^5 \frac{u}{v} \left| -\frac{1}{7} \right| \, du \, dv = \int_3^6 \int_1^5 \frac{u}{v} \cdot \frac{1}{7} \, du \, dv$$

6. (14 points) Consider the region E bounded above by $z = 4 - x^2 - y^2$, bounded below by the xy-plane $(z \ge 0)$, and in front of the xz-plane $(y \ge 0)$.

(a) Write $\iiint_E x^2 dV$ as an iterated integral with order of integration $\iiint_E dy dz dx$.



From our sketch, we can see that the lower y bound should be y=0 (i.e. the xz-plane). Then the paraboloid gives us our upper y bound. We need to solve its equation $z=4-x^2-y^2$ for y: $y^2=4-x^2-z$ so that $y=\pm\sqrt{4-x^2-z}$. Since y>0 we need the positive root. Thus $0 \le y \le \sqrt{4-x^2-z}$. Next, projecting this region onto the xz-plane, we get region bounded below by z=0 and above by $z=4-x^2-0^2=4-x^2$ (set y=0). Thus $0 \le z \le 4-x^2$. Finally, to get x's bounds. We intersect the bounds z=0 and $z=4-x^2$ and get $z=4-x^2$ so that $z=\pm 2$.

$$\int_{-2}^{2} \int_{0}^{4-x^{2}} \int_{0}^{\sqrt{4-x^{2}-z}} x^{2} \, dy \, dz \, dx$$

(b) Write $\iiint_E x^2 dV$ in terms of cylindrical coordinates and evaluate the integral.

In cylindrical coordinates, $z = 4 - x^2 - y^2 = 4 - r^2$. Intersecting with the xy-plane (i.e. z = 0) we get $0 = 4 - r^2$ so that r = 2. Therefore, the r and z bounds are $0 \le z \le 4 - r^2$ and $0 \le r \le 2$. The final bounds (for θ) bring into play the restriction that $y \ge 0$. This force $0 \le \theta \le \pi$ (the upper-half of \mathbb{R}^2).

$$\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{4-r^{2}} r^{2} \cos^{2}(\theta) \cdot r \, dz \, dr \, d\theta = \int_{0}^{\pi} \cos^{2}(\theta) \, d\theta \int_{0}^{2} \int_{0}^{4-r^{2}} r^{3} \, dz \, dr = \int_{0}^{\pi} \frac{1}{2} \left(1 + \cos(2\theta) \right) \, d\theta \int_{0}^{2} r^{3} z \bigg|_{0}^{4-r^{2}} \, dr$$

$$= \left[\frac{\theta}{2} + \frac{1}{4} \sin(2\theta) \right]_{0}^{\pi} \cdot \int_{0}^{2} 4r^{3} - r^{5} \, dr = \frac{\pi}{2} \left[r^{4} - \frac{1}{6} r^{6} \right]_{0}^{2} = \frac{\pi}{2} \left[16 - \frac{32}{3} \right] = \boxed{\frac{8\pi}{3}}$$

7. (15 points) Let E be the region bounded below by $z = \sqrt{x^2 + y^2}$ and above by z = 3.

(a) Rewrite the equations: $z = \sqrt{x^2 + y^2}$ and z = 3 in terms of cylindrical coordinates. $z = \overline{z}$ and z = 3

(b) Rewrite the equations: $z = \sqrt{x^2 + y^2}$ and z = 3 in terms of spherical coordinates.

 $\rho\cos(\varphi)=z=\sqrt{x^2+y^2}=r=\rho\sin(\varphi). \text{ Therefore, } \rho\cos(\varphi)=\rho\sin(\varphi). \text{ Thus } \tan(\varphi)=1. \text{ So } \boxed{\varphi=\frac{\pi}{4}}. \text{ For our other equation: } \rho\cos(\varphi)=z=3 \text{ so } \boxed{\rho=3\sec(\varphi)}.$

(c) Write $\iiint_E z e^{-x^2-y^2-z^2}\,dV$ in terms of spherical coordinates.

Do not evaluate this integral!

$$= \int_0^{2\pi} \int_0^{\pi/4} \int_0^{3 \sec(\varphi)} \rho \cos(\varphi) e^{-\rho^2} \rho^2 \sin(\varphi) \, d\rho \, d\varphi \, d\theta$$