Name:

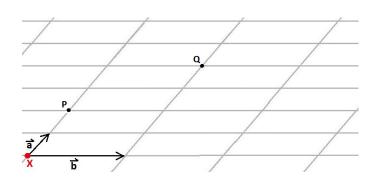
Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

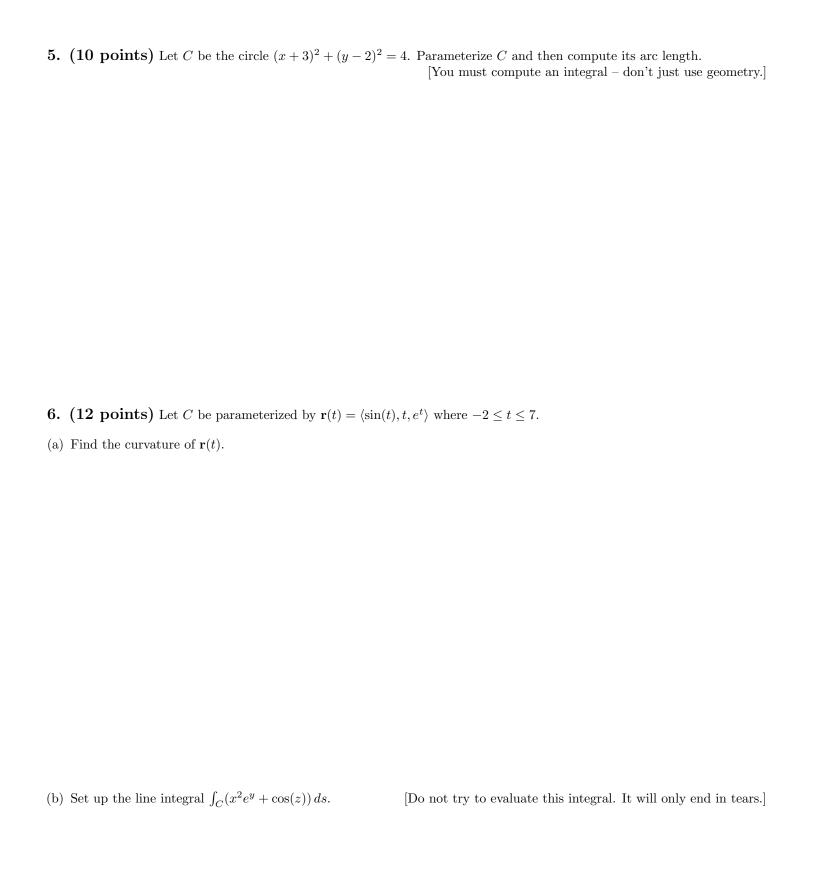
$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds\right) \qquad \kappa = \frac{|f''(x)|}{|x|^{3}}$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$|f''(x)|$$

$$\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$


- 1. (20 points) Vector Basics: Let  $\mathbf{u} = \langle 2, -2, 1 \rangle$ ,  $\mathbf{v} = \langle -1, 3, 1 \rangle$ , and  $\mathbf{w} = \langle -1, -1, 0 \rangle$ .
- (a) Find the volume of the parallelepiped spanned by  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$ .

(b) Find a vector that points in the same direction as **u** but has length 5.


(c) Find the angle between  $\mathbf{v}$  and  $\mathbf{w}$  (don't worry about evaluating inverse trig. functions).

Is this angle... **obtuse** ? (Circle your answer.) right, acute,

- (d) Fill in the blanks (a, b, and c are vectors)...
  - (i) " $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ " tells us that  $\mathbf{a}$  and  $\mathbf{b}$  are \_\_\_\_\_
  - (ii) " $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ " tells us that  $\mathbf{a}$ ,  $\mathbf{b}$ , and  $\mathbf{c}$  are \_
- (e) The vectors **a** and **b** are shown to the right. They are based at the point X. Sketch the vector  $\mathbf{a} + \mathbf{b}$  based at the point P and sketch the vector  $\mathbf{b} - \mathbf{a}$  based at the point Q.



| <b>2.</b> (10 points) Let $\ell_1$ be parametrized by $\mathbf{r}_1(t) = \langle t, -t+1, 3t+2 \rangle$ and let $\ell_2$ be the line which passes through the points $P = (-1, 2, -1)$ and $Q = (2, 1, 0)$ . Determine if $\ell_1$ and $\ell_2$ are (circle the correct answer) |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                 | the same,             | parallel (but n                           | ot the same),                                                                | intersecting,                                                      | or                | skew.                                                                             |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
| 2 (19:                                                                                                                                                                                                                                                                          | ) D1                  |                                           |                                                                              |                                                                    |                   |                                                                                   |
| 3. (12 points)                                                                                                                                                                                                                                                                  | ,                     |                                           |                                                                              |                                                                    |                   |                                                                                   |
| (a) Find a (scalar                                                                                                                                                                                                                                                              | r) equation for the   | e plane that passes                       | through the poi                                                              | ants $A = (2, 1, -1), B =$                                         | $= (3, 2, \dots)$ | (1), and $C = (2, 3, 2)$ .                                                        |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
| (b) Find the area                                                                                                                                                                                                                                                               | of the triangle w     | ith vertices $A, B, a$                    | and $C$ (as in part                                                          | (a)).                                                              |                   |                                                                                   |
| , ,                                                                                                                                                                                                                                                                             |                       |                                           | ` -                                                                          | . , ,                                                              |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
| 4. (10 points $\mathbf{v}_0 = 3\mathbf{i} - 4\mathbf{j}$ (mete $(t \text{ is measured in })$                                                                                                                                                                                    | ers per second) an    | es with constant acc d it begins at posit | celeration $\mathbf{a}(t) =$ ion $\mathbf{r}_0 = \mathbf{i} + \mathbf{j}$ (m | $2\mathbf{i} + 4\mathbf{k}$ (meters per seters). Find the position | second<br>on fun  | <sup>2</sup> ). Initially its velocity is ction $\mathbf{r}(t)$ for this particle |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
|                                                                                                                                                                                                                                                                                 |                       |                                           |                                                                              |                                                                    |                   |                                                                                   |
| What is the pa                                                                                                                                                                                                                                                                  | article's initial spe | eed?                                      |                                                                              | (meters per second                                                 | l).               |                                                                                   |



| 7  | (14 points) | Consider the aurye | parameterized by $\mathbf{r}(t)$ | $\rangle = \langle 4t, 3\cos(t), 3\sin(t) \rangle$ |
|----|-------------|--------------------|----------------------------------|----------------------------------------------------|
| 1. | (14 pomis)  | Consider the curve | parameterized by $\mathbf{r}(t)$ | $t = \langle 4t, 3\cos(t), 3\sin(t) \rangle$       |

(a) Parameterize a line tangent to  $\mathbf{r}(t)$  at  $t = \pi$ .

(b) Find the TNB-frame for  $\mathbf{r}(t)$ .

Does this curve lie in a plane? Why or why not?

- 8. (12 points) Choose ONE of the following: [In both cases, drawing a good explanatory picture will earn you some partial credit but for full credit you need more.]
  - I. Suppose  $\mathbf{v}$  and  $\mathbf{w}$  have the same length. Show  $\mathbf{v} + \mathbf{w}$  and  $\mathbf{v} \mathbf{w}$  are perpendicular.
  - II. Let C be a point and  $\ell$  a line parameterized by  $\mathbf{r}(t) = A + \overrightarrow{AB}t$ . Explain why the distance from the point C to the line  $\ell$  is given by  $\frac{|\overrightarrow{AC} \times \overrightarrow{AB}|}{|\overrightarrow{AB}|}$ .