Name:

 $\rho \sin(\theta) \sin(\varphi)$

 $\rho\cos(\varphi)$

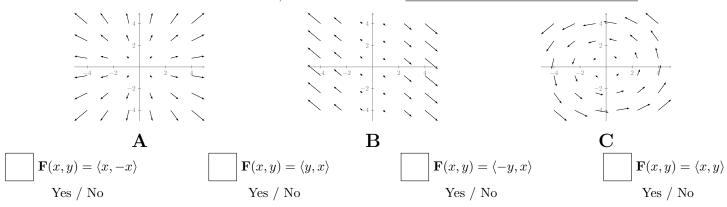
 $x = \rho \cos(\theta) \sin(\varphi)$

Be sure to show your work!

$$J = \rho^2 \sin(\varphi)$$

$$\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta) \right)$$

1. (12 points) The following are plots of several vector fields. Please note that all of the vectors have been scaled down so they do not overlap each other. Write A, B, and C next to the appropriate vector field's formula. Put an X next to the formula whose vector field is **not shown**. Also, for each vector field is **F** conservative? Circle "Yes" or "No".

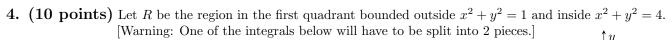


2. (9 points) Let $\mathbf{F}(x, y, z) = \langle x + y^2 z^3, y + x^5 z, \sin(y) + z \rangle$. Compute the divergence and curl of \mathbf{F} . Determine if the vector field is conservative.

This vector field IS / IS NOT conservative.

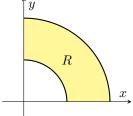
3. (9 points) Use a double Riemann sum to approximate $\iint_R \cos(x+y^2) dA$ where $R = [-2,2] \times [0,6]$.

Use midpoint rule and a 2×2 grid of rectangles (2 across and 2 up) to partition R. (Don't worry about simplifying.)



- (a) Set up the integral $\iint_R 2\cos(x^2+y^2) dA$ using the order of integration "dy dx".
- (b) Set up the integral $\iint_R 2\cos(x^2+y^2) dA$ using polar coordinates.

<u>Do not</u> evaluate this integral.



5. (12 points) Evaluate $\int_0^6 \int_{y/2}^3 e^{x^2} dx dy$. Include a sketch of the associated region of integration.

Note/Hint: You cannot integrate $\int e^{x^2} dx$ in terms of elementary functions.

./	JR	R is bounded by $x = 0$, $2x + \frac{1}{2}$	y = 1, $x - y = 0$, and $x - y = 2$.	Use the
change of coordinates: $u =$	x-y and $v=2x+y$	anddon't forget the Jacobi	an!	

<u>Do not</u> evaluate this integral.

7. (12 points) Consider the region E above $z = 2x^2 + 2y^2$ and below $z = 3 - x^2 - y^2$. Compute the centroid of E.

Note: The volume of E is $\frac{3}{2}\pi$. Also, you may use symmetry help cut down your work.

$$m = \iiint_E 1 \, dV \qquad M_{yz} = \iiint_E x \, dV \qquad M_{xz} = \iiint_E y \, dV \qquad M_{xy} = \iiint_E z \, dV \qquad (\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

- 8. (10 points) Consider the integral: $I = \int_{-5}^{0} \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} \int_{0}^{\sqrt{25-x^2-y^2}} \frac{y}{\sqrt{x^2+y^2+z^2}} dz dy dx$.
- (a) Rewrite I in the following order of integration: $\iiint dy dx dz$. Do **not** evaluate the integral.

- (b) Rewrite I in terms of cylindrical coordinates. Do **not** evaluate the integral.
- (c) Rewrite I in terms of spherical coordinates. Do **not** evaluate the integral.

- **9.** (14 points) Let E be the region inside $x^2 + y^2 + z^2 = 4$ and above z = 1. Set up integrals which compute the volume of E using the following orders of integration: [Do not evaluate these integrals.]
 - (a) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} ???? dz dy dx$
 - (b) Set up this integral in cylindrical coordinates.
 - (c) Set up this integral in spherical coordinates.

