1. (6 points) Let $\mathbf{F}(x, y, z) = \langle \ln(x^3 + 1), y \sin(xz), x^2y + z^5 \rangle$. Compute $\nabla \times \mathbf{F}$ and $\nabla \cdot \mathbf{F}$.

- 2. (11 points) Let $\mathbf{F}(x,y,z) = \langle 2x+z, 1+2yz, y^2+x \rangle$, and let C be the line segment from (0,1,1) to (2,1,0).

 Note: \mathbf{F} is a conservative vector field (I've checked for you).
- (a) Use the <u>fundamental theorem of line integrals</u> to compute $\int_C \mathbf{F} \bullet d\mathbf{r}$.

(b) Recompute $\int_C \mathbf{F} \bullet d\mathbf{r}$ directly (i.e. parameterize C etc.).

3. (5 points) Suppose $\mathbf{F} = \langle M, N, P \rangle$ is a vector field where M, N, P have continuous partial derivatives of all orders defined on all of \mathbb{R}^3 . Fill in the blank and circle the correct answers.

If $\nabla \times \mathbf{F} = \mathbf{0}$, then **F** is a

flux integrals are path / $\nabla \times \mathbf{F} = \mathbf{0}$ implies \mathbf{F} 's line surface independent.

flux integrals are path / $\nabla \cdot \mathbf{F} = \mathbf{0}$ implies \mathbf{F} 's line surface independent.

4. (9 points) Let C be the counter-clockwise oriented boundary of the region bounded by y = 1 and $y = 2 - x^2$.

Compute
$$\int_C \left(-y^2 + \sqrt{x^6 + e^{3x}}\right) dx + \sin(y^8 + ye^y) dy.$$

5. (9 points) C_1 is a circle of radius 1 (oriented clockwise), C_2 is an upper-half of a circle of radius 3 (oriented clockwise), and C_3 is a line segment closing off the semi-circle (oriented left to right). Let $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ be a vector field such that M and N have continuous first partials and in addition, $N_x - M_y = 4$ for all points in region R. We also know $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \pi$ and $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = 5\pi$. Note: The area of R is $7\pi/2$.

Compute $\int_{C_1} M(x, y) dx + N(x, y) dy = \underline{\qquad}$.

6.	(10 points) Let S_1 be the upper hemisphere: $x^2 + y^2 + z^2 = 4$, $z \ge 0$ and S_2 be the disk $x^2 + y^2 \le 4$ in the xy-plane.
Ori	ent both S_1 and S_2 upward. Let F be a smooth vector field such that $\iint_{S_2} \mathbf{F} \cdot \mathbf{n} d\sigma = \pi$ and $\nabla \cdot \mathbf{F} = z$.

Find $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

7. (12 points) Let S_1 be the surface parameterized by $\mathbf{r}(u,v) = \langle v \sin(u), v \cos(u), 2v \rangle$ where $-\pi/2 \le u \le 2\pi$ and $4 \le v \le 11$.

(a) Find both orientations for S_1 .

(b) Set up but do not evaluate the surface integral $\iint_{S_1} \sqrt{x^2 + y^2} \cdot e^z d\sigma$. [Don't worry about simplifying.]

(c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ where S_1 is <u>oriented downward</u> and $\mathbf{F}(x, y, z) = \langle z, y^2, 9 + x \rangle$. [Don't worry about computing the dot product or any significant simplification.]

8. (12 points) Find the centroid of the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant (i.e., $x, y, z \ge 0$). Note: This is a **surface**. You should be computing **surface integrals**.

$$m = \iint_{S_1} 1 \, d\sigma$$
 $M_{yz} = \iint_{S_1} x \, d\sigma$ $M_{xz} = \iint_{S_1} y \, d\sigma$ $M_{xy} = \iint_{S_1} z \, d\sigma$

9. (11 points) Consider the solid cylinder $E: x^2 + y^2 \le 1$ and $1 \le z \le 3$ and let $S_1 = \partial E$ be its outward oriented surface. In addition, let $\mathbf{F}(x,y,z) = \left\langle xz + \sqrt[6]{y^4 + z^4 + 12}, \ yz + \sin^{10}(x+z^2), \ \ln(x^8 + y^2 + 99) \right\rangle$. Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

10. (15 points) Let S_1 be the surface $z=x^2+y^2, 1 \le z \le 4$ (i.e., part of a circular paraboloid). Orient S_1 downward. Verify Stokes' Theorem for the surface S_1 , its boundary, and the vector field $\mathbf{F} = \langle y+x^2, y, xz+5 \rangle$.

