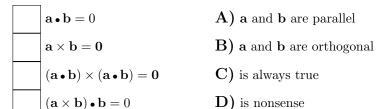
Name:

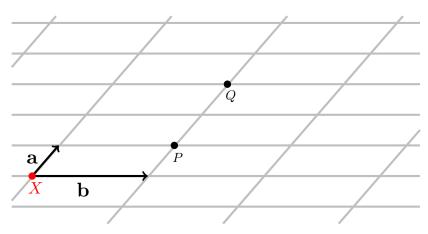
Be sure to show your work!

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|^{2}} \mathbf{w} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^{3}}$$

$$m = \int_{C} \delta \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \delta \, ds, \int_{C} y \delta \, ds, \int_{C} z \delta \, ds\right) \qquad \tau = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \cdot \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^{2}} \qquad \kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^{2}\right)^{\frac{3}{2}}}$$


- 1. (22 points) Vector Basics: Let $\mathbf{u}=\langle 2,-2,1\rangle,\,\mathbf{v}=\langle -1,3,1\rangle,\,\mathrm{and}\,\,\mathbf{w}=\langle 1,1,0\rangle.$
- (a) Find two unit vectors that are perpendicular to both \mathbf{u} and \mathbf{v} .

(b) Find the volume of the parallelepiped spanned by \mathbf{u} , \mathbf{v} , and \mathbf{w} .


(c) Find the angle between \mathbf{u} and \mathbf{v} (don't worry about evaluating inverse trig. functions).

Is this angle... right, acute, or obtuse? (Circle your answer.)

(d) Match the statement on the left to the corresponding statement on the right...

(e) The vectors \mathbf{a} and \mathbf{b} are shown to the right. They are based at the point X. Sketch the vector $-\mathbf{a} + \mathbf{b}$ based at the point P and sketch the vector $2\mathbf{a} - \mathbf{b}$ based at the point Q.

2. (8 points) Let $P = (-1, 2, -1)$ and	et ℓ_1 be parame	trized by $\mathbf{r}_1(t) =$ Determine if ℓ_1 a	$\langle t, -t+1, 3t+2 \rangle$ nd ℓ_2 are(circ	and let ℓ_2 be the lie the correct answer	ine which passes throur)	gh the points
		parallel (but		intersecting		
3. (12 points)	Dlana ald maana	-t				
, - ,				(0.1.1) D (0.0	1.0 (0.0.0)	
(a) Find a (scalar)	equation for the	e plane containin	g the points $A =$	(2,1,-1), B=(3,2)	(2,1), and $C=(2,3,2)$.	
(b) Find the area of	f the triangle Δ	ABC where A, B	B, and C are the	same points as in p	art (a).	
4 (10 points)	A strange object	rt is observed to	have velocity fur	action $\mathbf{v}(t) = 3t^2\mathbf{i} =$	$6\mathbf{j} + e^t\mathbf{k}$. In addition,	this object's
initial position was	known to be \mathbf{r}_0	$= 5\mathbf{i} + 100\mathbf{k}.$	[For what it's w	$\operatorname{v}(t) = St$ forth measuremen	ts are made in meters	and seconds.]
(a) This object's ac						
(b) Find this object	t's position fund	etion $\mathbf{r}(t)$.				

Its initial speed was $___$ meters per second.

5 .	(10 points) Parameterize and set up an integral that computes the arc length of the ellipse	$\frac{(x-1)^2}{1}$	$+\frac{(y+2)^2}{2}=1.$
		4	9

6. (16 points) Let C be parameterized by
$$\mathbf{r}(t) = \langle \sqrt{2}\sin(t), 2\cos(t), \sqrt{2}\sin(t) \rangle$$
.

(a) Find a parameterization, $\ell(t)$, for the line tangent to C at t=0.

(b) Find the TNB-frame for C.

(c) Compute the curvature of C.

7. (22 points) Consider the curve C parameterized by $\mathbf{r}(t) = \langle t^2, 3t, e^t \rangle, -3 \le t \le 10.$
(a) Compute the curvature of $\mathbf{r}(t)$.
(b) Compute the torsion of $\mathbf{r}(t)$.
(c) Set up the integral $\int_C (z + x \sin(y)) ds$ [Obviously we cannot hope to evaluate this by hand – please don't try.]
J_c
(d) Compute the tangential and normal components of acceleration of $\mathbf{r}(t)$.
(e) Does this curve lie in a plane? Why or why not?