Name:

 $x = \rho \cos(\theta) \sin(\varphi)$

Be sure to show your work!

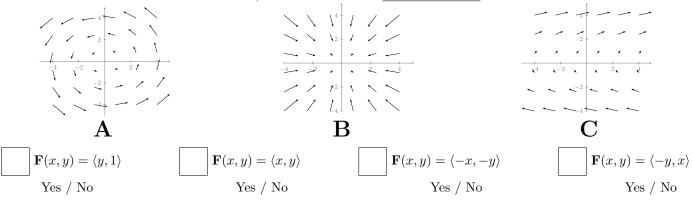
$$J = \rho^2 \sin(\varphi)$$

$$\rho \sin(\theta) \sin(\varphi)$$

$$\rho \cos(\varphi)$$

$$\cos^2(\theta) = \frac{1}{2} (1 + \cos(2\theta))$$

1. (12 points) The following are plots of several vector fields. Please note that all of the vectors have been scaled down so they do not overlap each other. Write A, B, and C next to the appropriate vector field's formula. Put an X next to the formula whose vector field is **not** shown. Also, for each vector field is **F** conservative? Circle "Yes" or "No".

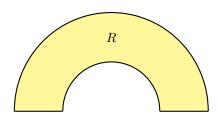


2. (10 points) Use a double Riemann sum to approximate $\iint_R y \cos(x^2 + 1) dA$ where $R = [-8, 8] \times [0, 4]$. Use midpoint rule and a 2×2 grid of rectangles (2 across and 2 up) to partition R. (Don't worry about simplifying.)

3. (7 points) Let $\mathbf{F}(x, y, z) = \langle 10, xyz, e^x \rangle$ and C be the curve parameterized by $\mathbf{r}(t) = \langle t^2, t^4, t^6 \rangle$ where $-7 \le t \le 9$. Set up but **do not** evaluate the line integral: $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Centroid:
$$m = \iint_R 1 \, dA$$
, $M_y = \iint_R x \, dA$, $M_x = \iint_R y \, dA$, $(\bar{x}, \bar{y}) = (M_y/m, M_x/m)$

- 4. (13 points) Let R be the annular region between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ where $y \ge 0$ (pictured below). [Warning: One of the integrals below will have to be split into several pieces.]
 - (a) Set up the integral $\iint_R y \, dA$ in polar coordinates.
 - (b) Set up the integral $\iint_R y \, dA$ rectangular coordinates.
 - (c) Find the centroid of R.



- **5.** (11 points) Consider $\int_0^2 \int_{3x}^6 \sin(y^2) \, dy \, dx$.
- (a) Sketch the corresponding region of integration.
- (b) Compute the iterated integral. Hint: You cannot integrate $\int \sin(y^2) dy$ in terms of elementary functions.

6. (11 points) Set up the integral $\iint_{\mathcal{D}} e^{(x-y)^2} dA$ where R is the region bounded by the lines y = x - 3, y = x - 4,

y = -2x, and x = 0. Note: Use the change of coordinates: u = 2x + y and v = x - y. **DO NOT** evaluate this integral.

7. (10 points) Let E be the region bounded by $z = x^2 + y^2 + 1$ and z = 5. Compute the integral $\iiint_E \frac{1}{\sqrt{x^2 + y^2}} dV$.

8. (12 points) Consider the integral:
$$I = \int_{-7}^{0} \int_{-\sqrt{49-x^2}}^{\sqrt{49-x^2}} \int_{-\sqrt{49-x^2-y^2}}^{0} \sqrt{x^2 + y^2 + z^2} dz dy dx$$
.

- (a) Rewrite I in the following order of integration: $\iiint dy dx dz$. Do **not** evaluate the integral.
- (b) Rewrite I in terms of cylindrical coordinates. Do **not** evaluate the integral.
- (c) Rewrite I in terms of spherical coordinates. Do **not** evaluate the integral.
- 9. (14 points) Let E be the region above the cone $z = 2\sqrt{x^2 + y^2}$, below z = 18, and where $y \ge 0$.
 - (a) Set up $\iiint_E x + z \, dV$ in rectangular coordinates.
 - (b) Set up $\iiint_E x + z \, dV$ in cylindrical coordinates.
 - (c) Set up $\iiint_E x + z \, dV$ in spherical coordinates.

