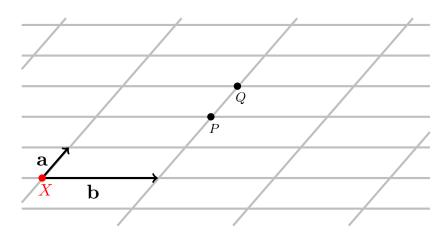
Name:

Be sure to show your work!

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t)$$

$$m = \int_{C} \rho \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_{C} x \rho \, ds, \int_{C} y \rho \, ds, \int_{C} z \rho \, ds\right)$$

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$
$$\kappa = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{\frac{3}{2}}}$$


- 1. (20 points) Vector Basics: Let $\mathbf{v} = \langle 3, -1, 2 \rangle$ and $\mathbf{w} = \langle 2, 1, -1 \rangle$.
- (a) Find a **unit** vector perpendicular to both \mathbf{v} and \mathbf{w} .

(b) Compute $proj_{\mathbf{v}}(\mathbf{w})$

(c) Find the angle between \mathbf{v} and \mathbf{w} (don't worry about evaluating inverse trig. functions).

Is this angle... right, acute, or obtuse? (Circle your answer.)

- (d) Fill in the blanks (a, b, and c are vectors)...
 - (i) $|\mathbf{a} \times \mathbf{b}|$ computes the _____ of the ____ spanned by \mathbf{a} and \mathbf{b} .
 - (ii) $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ computes the ______ of the _____ spanned by \mathbf{a} , \mathbf{b} , and \mathbf{c} .
- (e) The vectors a and b are shown to the right. They are based at the point X. Sketch the vector a − b based at the point P and sketch the vector 2a + b based at the point Q.

2. (10 points) Let ℓ_1 be parametrized by $\mathbf{r}_1(t) = \langle 2t+1, -t+3, t \rangle$ and let ℓ_2 be the line which passes through the points $P = (2, 1, -1)$ and $Q = (-2, 3, -3)$. Determine if ℓ_1 and ℓ_2 are (circle the correct answer)							he points		
	(, , , ,	the same,						skew.	
3.	(13 points)	Plane old geome	try.						
(a)	Find a (scalar)	equation for the	plane that c	ontaining th	e line $\mathbf{r}(t)$ =	$= \langle 1 + 2t, -1 - t,$	$,-2t\rangle$ and t	the point $P = ($	1, 0, -2).
(b)		two planes: $x + 2$							
	functions).	f these planes int	ersect, inic t	ne angle be	tween these	pianes (don t v	vorry about	i evaruating mv	erse trig.
4.	(8 points)	Find the area of the	he triangle w	ith vertices	A = (1, 0, 2)	B = (2, 2, 5), a	and $C = (1,$	(3,3).	

5.	(8 points)	Compute the	curvature	of $\mathbf{r}(t)$	$= \langle t^2 \rangle$	$\sin(t)$	e^{2t}

6. (13 points) Consider the circle
$$C: (x-a)^2 + (y-b)^2 = R^2$$
 (where $R > 0$).

(a) Parameterize ${\cal C}$ and compute its arc length using your parameterization.

(b) Compute the curvature of ${\cal C}$ using your parameterization.

7. (16 points) Consider the curve parameterized by $\mathbf{r}(t) = \langle 3\sin(t), 4t, -3\cos(t) \rangle$ where $0 \le t \le 2\pi$.
(a) Compute the centroid of this curve.
(1) Fig. 1.1. Then $(1, \dots, (n))$
(b) Find the TNB-frame for $\mathbf{r}(t)$.
Does this curve lie in a plane? Why or why not?
8. (12 points) Choose ONE of the following: [In both cases, drawing a good explanatory picture will earn you some partial credit – but for full credit you need more.]
I. Let a and b be vectors. Simplify $(2\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b})$. Explain your answer geometrically.
II. Let C be the curve in the plane defined by $y = f(x)$ (where f is a function with at least two continuous derivatives) Use the special formula for curvature to explain why $\kappa(x) = 0$ exactly when C is a line (or part of a line).