Name:

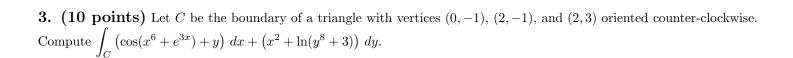
Be sure to show your work!

1. (7 points) Let $\mathbf{F}(x, y, z) = \langle x^2 + yz, y + e^z, \sin(xy^2) \rangle$. Compute $\nabla \times \mathbf{F}$ and $\nabla \cdot \mathbf{F}$.

If ${f F}$ conservative? Yes / No

- **2.** (11 points) Let $\mathbf{F}(x, y, z) = \langle 2xyz + 1, x^2z + z, x^2y + y + 2z \rangle$. This is a conservative vector field (I've checked for you).
- (a) Use the fundamental theorem of line integrals to compute $\int_C \mathbf{F} \bullet d\mathbf{r}$ where C is the line segment from (1, -1, 0) to (1, 2, 2).

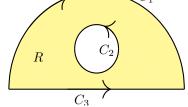
(b) Recompute $\int_C \mathbf{F} \bullet d\mathbf{r}$ directly (i.e. parameterize C etc.).



4. (9 points) C_1 is an upper-half of a circle of radius 3 (oriented clockwise), C_2 is a circle of radius 1 (oriented counter clockwise), and C_3 is a line segment closing off the semi-circle (oriented left to right). Let $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ be a vector field such that M and N have continuous first partials and in addition, $N_x - M_y = 4$ for all points in

region R. We also know $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 2\pi$ and $\int_{C_3} \mathbf{F} \cdot d\mathbf{r} = \pi$. Note: The area of R is $7\pi/2$.

Compute $\int_{C_1} M(x,y) dx + N(x,y) dy = \underline{\qquad}$.



5. (12 points) Let S_1 be the lower hemisphere: $x^2 + y^2 + z^2 = 1$, $z \le 0$ and S_2 be the disk $x^2 + y^2 \le 1$ in the xy-plane. Orient both S_1 and S_2 upward. Let \mathbf{F} be a smooth vector field such that $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma = 10\pi$ and $\nabla \cdot \mathbf{F} = 5x^2 + 5y^2 + 5z^2$. Find $\iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

6. (12 points) Find the centroid of the part of the cone $z = 3\sqrt{x^2 + y^2}$ where $z \le 6$.

Note: This is a surface. You should be computing surface integrals.

$$m = \iint_{S_1} 1 \, d\sigma$$
 $M_{yz} = \iint_{S_1} x \, d\sigma$ $M_{xz} = \iint_{S_1} y \, d\sigma$ $M_{xy} = \iint_{S_1} z \, d\sigma$

- 7. (13 points) Let S_1 be the surface parameterized by $\mathbf{r}(u,v) = \langle u\cos(v), u\sin(v), 9 u^2 \rangle$ where $1 \le u \le 2$ and $\pi \le v \le 2\pi$.
- (a) Find both orientations for S_1 .

- (b) Set up but **do not evaluate** the surface integral $\iint_{S_1} z \ln(x^2 + y^2 + 1) d\sigma$. [Don't worry about simplifying.]
- (c) Set up but **do not evaluate** the flux integral $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ where S_1 is <u>oriented downward</u> and $\mathbf{F}(x, y, z) = \langle xz, y, x + y \rangle$. [Don't worry about computing the dot product or any significant simplification.]

8. (11 points) Let S_1 be the surface of the solid cylinder defined by $x^2 + y^2 \le 4$ and $-2 \le z \le 3$. Orient S_1 outward and let $\mathbf{F}(x,y,z) = \left\langle 4xy^2 + \cos(y^{15}+z), \ln(x^2+z^4+1) + 2y, 4x^2z + e^{x^3y} \right\rangle$. Compute the flux integral $\iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.

9. (15 points) Let S_1 be the upper hemisphere: $x^2 + y^2 + z^2 = 4$ and $z \ge 0$. Orient S_1 downward. Verify Stokes' Theorem for the surface S_1 , its boundary, and the vector field $\mathbf{F}(x, y, z) = \langle z, x, x \rangle$.