Name:

Be sure to show your work!

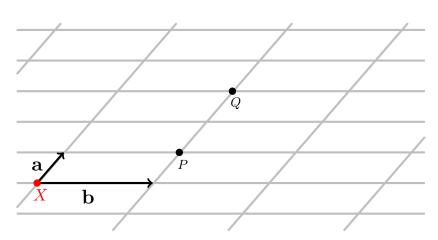
$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{w}|^2} \mathbf{w} \qquad \mathbf{r}''(t) = \left(\frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}\right) \mathbf{T}(t) + \left(\frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}\right) \mathbf{N}(t) \qquad \kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

$$m = \int_C \delta(x, y, z) \, ds \qquad (\bar{x}, \bar{y}, \bar{z}) = \frac{1}{m} \left(\int_C x \delta(x, y, z) \, ds, \int_C y \delta(x, y, z) \, ds, \int_C z \delta(x, y, z) \, ds\right) \qquad \tau = \frac{(\mathbf{r}'(t) \times \mathbf{r}''(t)) \cdot \mathbf{r}'''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|^2}$$

- 1. (24 points) Vector Basics: Let $\mathbf{v} = \langle -2, 0, 1 \rangle$ and $\mathbf{w} = \langle 1, 2, -2 \rangle$.
- (a) Compute $\operatorname{proj}_{\mathbf{w}}(\mathbf{v})$.
- (b) Find two unit vectors which are orthogonal (i.e., perpendicular) to both \mathbf{v} and \mathbf{w} .

(c) Find the angle between \mathbf{v} and \mathbf{w} (don't worry about evaluating inverse trig. functions).

Is this angle... right, acute, or obtuse ? (Circle your answer.)


(d) Let \mathbf{a} , \mathbf{b} , and \mathbf{c} be vectors in \mathbb{R}^3 . Fill in the blanks:

If $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then \mathbf{a} and \mathbf{b} are _____.

If $\mathbf{a} \cdot \mathbf{b} = 0$, then \mathbf{a} and \mathbf{b} are _____.

If $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$, then \mathbf{a} , \mathbf{b} , and \mathbf{c} are ______

(e) The vectors a and b are shown to the right. They are based at the point X. Sketch the vector 2a − b based at the point P and sketch the vector −a + b based at the point Q.

2. (14 points) Give vector valued functions which parameterize the following curves.

Don't forget to specify a domain for your parameter.

- (a) The line segment from A = (1, 2, 0) to B = (4, 0, 1).
- (b) The circle $(x+1)^2 + (y-3)^2 = 25$.
- 3. (14 points) Lines and Planes
- (a) Find an equation for the plane which passes through the points A = (1, 0, -1), B = (2, 3, 0), and C = (3, -1, 1).

(b) Consider the line parameterized by $\mathbf{r}(t) = \langle 2t, -4t + 1, 6t - 2 \rangle$ and the plane -x + 2y - 3z = 10. The line and plane are (circle all that apply)... parallel perpendicular intersecting.

- 4. (12 points) Suppose that a particle's velocity is given by $\mathbf{v}(t) = t^2\mathbf{i} + 5e^t\mathbf{j}$. In addition, we have that this particle's initial position is $\mathbf{r}_0 = \mathbf{i} + 2\mathbf{j}$. [For what it's worth, measurements are made in meters and seconds.]
- (a) The particle's initial speed is _____ meters per second.
- (b) Find the particle's acceleration $\mathbf{a}(t)$.
- (c) Find the particle's position function $\mathbf{r}(t)$.

5.	(18 points) Let C be the curve parameterized by $\mathbf{r}(t) = \langle 3t, 4\sin(t), 4\cos(t) \rangle, -\pi \leq t \leq 3\pi$.
	Compute the TNB -frame of C .
(b)	Compute the curvature of C .
(D)	Compute the curvature of C.
()	
(c)	Compute the arc length of C .
	2. 2
(d)	Set up (but do not evaluate) the line integral $\int_C x e^{y^2 + z^2} ds$.

6. (18 points) Consider the curve C parameterized by $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$.
(a) Find a parameterization for the line tangent to C at $t=2$.
(b) Compute the curvature of C .
(c) Compute the torsion of C .
(d) Compute the tangential and normal components of acceleration of $\mathbf{r}(t)$.
(*)
(e) Does this curve lie in a plane? Why or why not?