Name:

 $\rho \sin(\theta) \sin(\varphi)$

 $\rho\cos(\varphi)$

 $x = \rho \cos(\theta) \sin(\varphi)$

Be sure to show your work!

$$J = \rho^2 \sin(\varphi)$$

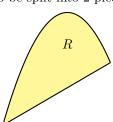
$$\cos^2(\theta) = \frac{1}{2} \left(1 + \cos(2\theta) \right)$$

1. (13 points) Working hard.

- (a) Let $\mathbf{F}(x,y,z) = \langle xy^5, zx, 1 \rangle$ and C be the curve parameterized by $\mathbf{r}(t) = \langle 3\cos(t), 7t, 3\sin(t) \rangle$ where $-\pi \leq t \leq 4\pi$. Set up but **do not** evaluate the line integral: $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- (b) Let C be the line y = 2x 1 where $1 \le x \le 2$. Compute $\int_C (y+1) dx + x dy$.

- 2. (12 points) Let R be the region bounded by $y = 5 x^2$ and y = x 1 (pictured below). [Warning: One of the integrals below will have to be split into 2 pieces.]
 - (a) Set up the integral $\iint_R 2xy \, dA$ in the order of integration: " $dy \, dx$ ".
 - (b) Set up the integral $\iint_R 2xy \, dA$ in the order of integration: " $dx \, dy$ ".

 $\mathbf{Do}\ \mathbf{not}$ evaluate these integrals.



3. (12 points) Compute $\int_0^2 \int_{y/2}^1 \cos(x^2) dx dy$. Include a sketch of the region of integration.

[Hint: You cannot integrate $\int \cos(x^2) dx$ in terms of elementary functions.]

4. (13 points) Set up but do not compute $\iint_R \frac{-3x+y}{x+y} dA$ where R is the region bounded by y = 3x+1, y = 3x+2, y = -x+1, and y = -x+3.

 Hint : Use a "natural" change of coordinates which simplifies the region R and \ldots don't forget the Jacobian!

5. (13 points) Let R be the region bounded by $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ such that $x \ge 0$. Note: The area of R is $\frac{3}{2}\pi$.

Centroid formulas:
$$m = \iint\limits_R 1\,dA$$
 $M_y = \iint\limits_R x\,dA$ $M_x = \iint\limits_R y\,dA$ $(\bar{x},\bar{y}) = \left(\frac{M_y}{m},\frac{M_x}{m}\right)$

- (a) Sketch R and fill in the (polar) bounds for R: $\leq r \leq \underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}} \leq \theta \leq \underline{\hspace{1cm}}$.
- (b) Find the centroid of R.

- **6.** (12 points) Consider the integral: $I = \int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{-\sqrt{4-x^2-y^2}}^{0} z \cdot (x^2 + y^2 + z^2) dz dy dx$.
- (a) Rewrite I in the following order of integration: $\iiint dx dz dy$. Do **not** evaluate the integral.

(b) Rewrite I in terms of cylindrical coordinates. Do **not** evaluate the integral.

(c) Rewrite I in terms of spherical coordinates. Do **not** evaluate the integral. 7. (10 points) Compute $\iiint_E x^2 + y^2 dV$ where E is the region bounded by z = -1, z = 4, and $x^2 + y^2 = 4$.

8. (15 points) Let E be the region below z=6 and above $z=2\sqrt{x^2+y^2}$. Set up integrals which compute the volume of E using the following orders of integration: [Do **not** evaluate these integrals.]

(a)
$$\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} ???? dz dy dx$$

- (b) Set up this integral in cylindrical coordinates.
- (c) Set up this integral in spherical coordinates.

