Math 251 Fall 2005 Exam #2 Answer Key

(12 points): Let $\mathbf{F}(x, y, z) = (2x + yz)\mathbf{i} + (z\cos(y) + xz)\mathbf{j} + (\sin(y) + xy - 3z^2)\mathbf{k}$. Show that \mathbf{F} is conservative by finding a function f such that $\mathbf{F} = \nabla f$.

Integrate each component with respect to the proper variable (**i** goes with x, **j** goes with y, and **k** goes with z).

$$\int 2x + yz \, dx = x^2 + xyz + g_1(y, z)$$

$$\int z \cos(y) + xz \, dy = z \sin(y) + xyz + g_2(x, z)$$

$$\int \sin(y) + xy - 3z^2 \, dz = z \sin(y) + xyz - z^3 + g_3(x, y)$$

Putting this together we see that $f(x, y, z) = x^2 + xyz + z\sin(y) - z^3$ (plus an arbitrary constant C).

(10 points): Let $f(x,y) = x^2 + 2y^2 + xy^2 + 1$. Find all critical points, then determine whether each critical point is a minimum, a maximum, a saddle point, or a nothing.

The first partials: $f_x = 2x + y^2$, $f_y = 4y + 2xy$. We must solve the system of equations: $f_x = 0$ and $f_y = 0$ to find the critical points. $2x + y^2 = 0$ implies that $2x = -y^2$. We can substitute this into the second equation and get $4y + (-y^2)y = 0$. This means that $y(4-y^2) = 0$. Thus y = 0 or $y = \pm 2$. Now we know that $2x = -y^2$ which says that $x = -\frac{1}{2}y^2$. So if y = 0, then x = 0. And if $y = \pm 2$, then x = -2. Therefore, we have three critical points (0,0), (-2,-2), and (-2,2).

Let's test these points. First, we must compute the second partials. $f_{xx} = 2$, $f_{xy} = f_{yx} = 2y$, and $f_{yy} = 4 + 2x$. Thus $D = f_{xx}f_{yy} - f_{xy}f_{yx} = 2(4 + 2x) - (2y)^2 = 8 + 4x - 4y^2$. D(0,0) = 8 > 0 and $f_{xx}(0,0) = 2 > 0$, so (0,0) is a relative minimum. D(-2,-2) = 8 - 8 - 16 < 0, so (-2,-2) is a saddle point. D(-2,2) = 8 - 8 - 16 < 0, so (-2,2) is a saddle point.

(12 points): Use the method of Lagrange multipliers to find the maximum and minimum of f(x,y) = xy subject to the constraint $x^2 + y^2 = 4$. WARNING: You must use Lagrange multipliers!

The gradient of f is $y\mathbf{i} + x\mathbf{j}$ and the gradient of $x^2 + y^2$ is $2x\mathbf{i} + 2y\mathbf{j}$ Thus we have the equations $y = 2x\lambda$ and $x = 2y\lambda$. Suppose that x and y are non-zero. Then:

$$\frac{y}{x} = 2\lambda = \frac{x}{y}$$

Therefore, $x^2 = y^2$. Now using the constraint equation we get that $x^2 + y^2 = 2x^2 = 4$. Thus $x = \pm \sqrt{2}$. Now $x^2 = y^2$, so $y = \pm x$. If $x = \sqrt{2}$, then $y = \pm \sqrt{2}$. If $x = -\sqrt{2}$,

then $y = \pm \sqrt{2}$. So we have four solutions $(\sqrt{2}, \sqrt{2})$, $(\sqrt{2}, -\sqrt{2})$, $(-\sqrt{2}, \sqrt{2})$, and $(-\sqrt{2}, -\sqrt{2})$.

Next notice that $f(-\sqrt{2}, -\sqrt{2}) = f(\sqrt{2}, \sqrt{2}) = 2$ and $f(\sqrt{2}, -\sqrt{2}) = f(-\sqrt{2}, \sqrt{2}) = -2$.

If either x or y is zero, then their product is zero (this also forces $\lambda = 0$). So we ignore those points.

The maximum value of f is 2. The minimum value of f is -2.

(12 points): Evaluate the following integral using an *obvious* change of variables:

$$\iint_{R} \frac{2x+y}{x-y} \, dA$$

where R is the parallelogram bounded by the lines 2x + y = 1, 2x + y = 0, x - y = 2, and x - y = 1.

Notice that both 2x + y and x - y appear in the integral and in the bounds. So we choose a (linear) change of variables: u = 2x + y and v = x - y. Now the bounds change to u = 1, u = 0, v = 2, and v = 1. So we will be integrating over a rectangle (much better).

Next we need to compute the Jacobian. One way to do this is to solve for x and y in the change of variables equations. Let's add the equations together. We get u+v=2x+y+x-y (= 3x). Thus $x=\frac{1}{3}u+\frac{1}{3}v$. Next, we'll eliminate x. Let's subtract 2 times the second equation from the first equation. We get u-2v=2x+y-2x+2y (= 3y). Thus $y=\frac{1}{3}u-\frac{2}{3}v$. Let's compute the Jacobian:

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{vmatrix} = -\frac{2}{9} - \frac{1}{9} = -\frac{1}{3}$$

Therefore,

$$\iint_{R} \frac{2x+y}{x-y} dA = \int_{1}^{2} \int_{0}^{1} \frac{u}{v} \left| -\frac{1}{3} \right| du dv = \int_{1}^{2} \frac{1}{3v} \frac{1}{2} u^{2} \Big|_{0}^{1} dv = \int_{1}^{2} \frac{1}{6v} dv = \frac{1}{6} \ln(v) \Big|_{1}^{2} = \frac{1}{6} \ln(2)$$

Note: We could have saved ourselves some work by computing the Jacobian of the inverse transformation:

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -2 - 1 = -3$$

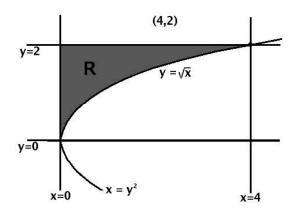
Thus

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{\frac{\partial(u,v)}{\partial(x,y)}} = -\frac{1}{3}$$

(11 points): Evaluate the following integral (*Hint*: reverse the order of integration):

$$\int_0^4 \int_{\sqrt{x}}^2 3\sqrt{1 + y^3} \, dy \, dx$$

This region is bounded by $y = \sqrt{x}$, y = 2, x = 0, and x = 4. Alternatively, it is bounded by x = 0, $x = y^2$, y = 0, and $y = \sqrt{4} = 2$.



$$\int_0^4 \int_{\sqrt{x}}^2 3\sqrt{1+y^3} \, dy \, dx = \int_0^2 \int_0^{y^2} 3\sqrt{1+y^3} \, dx \, dy = \int_0^2 3x\sqrt{1+y^3} \Big|_0^{y^2} \, dy = \int_0^2 3y^2 \sqrt{1+y^3} \, dy$$

Use the substitution $u = 1 + y^3$ ($du = 3y^2 dy$, the bounds change to $u = 1 + 0^3 = 1$ and $u = 1 + 2^3 = 9$) and get:

$$= \int_{1}^{9} \sqrt{u} \, du = \frac{2}{3} u^{3/2} \Big|_{1}^{9} = \frac{2}{3} 9^{3/2} - \frac{2}{3} 1^{3/2} = 18 - \frac{2}{3} = \frac{52}{3}$$

(11 points): Consider the solid E which is bounded by $z = \sqrt{9 - x^2 - y^2}$ and the xy-plane. Write a triple integral which computes the volume of E in: rectangular, cylidrical, and spherical coordinates. Then find the volume of E. (Hint: If you identify this solid, you can use simple highschool geometry to find its volume.)

 $z=\sqrt{9-x^2-y^2}$ intersects the xy-plane (z=0) on the curve $0=\sqrt{9-x^2-y^2}$ which is the circle $x^2+y^2=9$. We must integrate over the inside of this circle, so we have the bounds $y=\pm\sqrt{9-x^2}$ and $x=\pm3$. Therefore, in rectangular coordinates:

Volume(E) =
$$\iiint_E dV = \int_{-3}^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2-y^2}} dz \, dy \, dx$$

Switching to cylindrical coordinates, we need to describe the inside of the circle $r^2=x^2+y^2=9$ in polar coordinates. But this is easy. We have the bounds r=0, $r=3,\;\theta=0$ and $\theta=2\pi$. Also, we need to describe the upper z bound in the new coordinates, but again this is easy $z=\sqrt{9-x^2-y^2}=\sqrt{9-r^2}$. Therefore, in cylindrical coordinates:

Volume(E) =
$$\iiint_E dV = \int_0^{2\pi} \int_0^3 \int_0^{\sqrt{9-r^2}} r \, dz \, dr \, d\theta$$

Finally, switching to spherical coordinates, we notice that $z = \sqrt{9 - x^2 - y^2}$ is really just the top cap of a sphere (thus ϕ should only range from 0 to $\pi/2$), so we get:

Volume(E) =
$$\iiint_E dV = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \int_0^3 \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta$$

The equation for the volume of a sphere is $\frac{4}{3}\pi r^3$. Thus the sphere of radius 3 has volume 36π . So our solid has volume 18π (all three of the integral evaluate to 18π).

(11 points): Evaluate the following integral (*Hint:* change coordinates!):

$$\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{4-x^2-y^2}} \frac{e^{\sqrt{x^2+y^2+z^2}}}{x^2+y^2+z^2} \, dz \, dy \, dx$$

We know that $x^2+y^2+z^2=\rho^2$. So the natural choice is sphereical coordinates. The top z bound is equation of the top half of a sphere of radius 2. The x and y bounds enclose a quarter circle or radius 2. Thus we have $0 \le \rho \le 2$, $0 \le \phi \le \frac{\pi}{2}$ (just the top half of the sphere), and $0 \le \theta \le \frac{\pi}{2}$ (one quarter of the circle). Therefore, the integral transforms to:

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \frac{e^{\rho}}{\rho^{2}} \rho^{2} \sin(\phi) \, d\rho \, d\phi \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} e^{\rho} \sin(\phi) \, d\rho \, d\phi \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} e^{\rho} \sin(\phi) |_{0}^{2} \, d\phi \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} (e^{2} - 1) \sin(\phi) \, d\phi \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} -(e^{2} - 1) \cos(\phi) |_{0}^{\frac{\pi}{2}} \, d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} 0 + (e^{2} - 1) \, d\theta$$

$$= (e^{2} - 1) \theta |_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} (e^{2} - 1)$$

(10 points): Let $\mathbf{F}(x,y) = e^{-y}\mathbf{i} + (2y - xe^{-y})\mathbf{j}$. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any curve from (0,0) to (1,2).

We can see that $\frac{\partial}{\partial y}(e^{-y}) = -e^{-y} = \frac{\partial}{\partial x}(2y - xe^{-y})$. Thus **F** is conservative. Let's integrate to find a potential function.

$$\int e^{-y} \, dx = x e^{-y} + g_1(y)$$

$$\int 2y - xe^{-y} \, dy = y^2 + xe^{-y} + g_2(x)$$

Therefore, $f(x,y) = y^2 + xe^{-y}$ (plus a constant if we wish). By the fundamental theorem of line integrals:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(1,2) - f(0,0) = (2^2 + (1)e^{-2}) - (0+0) = 4 + e^{-2}$$

(11 points): Find the center of mass of a thin wire with constant density $\rho(x, y, z) = 2$ in the shape of the upper half of the circle of radius 2 centered at the origin.

First, we need to parametrize the circle. $\mathbf{r}(t) = 2\cos(t)\mathbf{i} + 2\sin(t)\mathbf{j}$ parametrizes the circle of radius 2 centered at the origin. If we restrict t to the interval $[0, \pi]$, we will get the top half of the circle.

Notice that $\mathbf{r}'(t) = -2\sin(t)\mathbf{i} + 2\cos(t)\mathbf{j}$. Thus $|\mathbf{r}'(t)| = \sqrt{4\sin^2(t) + 4\cos^2(t)} = 2$.

$$m = \int_{C} \rho(x, y) \, ds = \int_{0}^{\pi} \rho(x, y) |\mathbf{r}'(t)| \, dt = \int_{0}^{\pi} 2(2) \, dt = 4\pi$$

$$M_{y} = \int_{C} x \rho(x, y) \, ds = \int_{0}^{\pi} x(t) \rho(x, y) |\mathbf{r}'(t)| \, dt$$

$$= \int_{0}^{\pi} 2 \cos(t) 2(2) \, dt = \int_{0}^{\pi} 8 \cos(t) = 8 \sin(\pi) - 8 \sin(0) = 0$$

(Or you could just use common sense to see that this must be zero – the wire is symmetric about the y-axis!)

$$M_x = \int_C y \rho(x, y) \, ds = \int_0^{\pi} y(t) \rho(x, y) |\mathbf{r}'(t)| \, dt$$
$$= \int_0^{\pi} 2\sin(t) 2(2) \, dt = \int_0^{\pi} 8\sin(t) = -8\cos(\pi) + 8\cos(0) = 16$$

Therefore,

$$(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right) = \left(\frac{0}{4\pi}, \frac{16}{4\pi}\right) = \left(0, \frac{4}{\pi}\right)$$