Name:

Don't merely state answers, prove your statements. Be sure to show your work!

- 1. (____/12 points) Consider theorem L10: $\vdash (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
 - (a) Show L10 is a tautology using by filling out an abbreviated truth table.

(b) Prove L10 in system L. [You may use the deduction theorem and theorems L1 - L9.]

I am in the middle of proving " $A \to B$, $\neg A \to B \vdash B$ ". First, show (using an abbreviated truth table) that this is indeed a theorem of L. Then explain why I know I've made a mistake if I have the following lines in my proof:

3. (____/10 points) Construct models whose objects are $\mathbb Z$ (integers) to show that

$$\forall x \forall y \left(P(x,y) \to P(f(y),f(x)) \right)$$

is satisfiable but not logically valid. [Note: P(x,y) is a predicate and f(x) is a function.]

- 4. (____/14 points) Proofs in K.
 - (a) Prove theorem K13: $\vdash \forall x A(x) \rightarrow \exists x A(x)$

(b) Prove theorem K31: $\vdash \exists x (A(x) \land B(x)) \rightarrow (\exists x A(x) \land \exists x B(x))$

- - (a) Use induction to show that $1+4+7+\cdots+(3n-2)=\frac{1}{2}n(3n-1)$ for all positive integers n.

(b) Prove that $\sqrt{2}$ is irrational. [Recall: x is rational means \exists integers $p, q \neq 0$ such that x = p/q.] Hint: Proof by contradiction.

Test #1 – TAKE HOME Due: Feb. 24th, 2010

Name:						_	

You may use notes and your textbook, but no help from other people especially your classmates.

- 6. (____/12 points) A few more proofs in L
 - (a) Prove theorem L7: $A \to (B \to C) \vdash B \to (A \to C)$. You may use the deduction theorem and theorems L1 L6.
 - (b) Prove $\vdash (A \land \neg A) \to B$. You may use the deduction theorem and theorems L1 L15.
 - (c) Prove $A \vee B \vdash B \vee A$. You may use the deduction theorem and theorems L1 L12.
- 7. (____/15 points) A few more proofs in K. Prove (at least) 5 of the theorems K27 K37.
- 8. (____/12 points) More proofs !?!
 - (a) Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n! = (n+1)! 1$ for all positive integers n.
 - (b) Let n be an odd integer. Prove that $n^2 1$ is a multiple of 4.
 - (c) Let r be an irrational number and m be an integer. Prove that mr is irrational.
 - (d) Let a, b, and c be integers. Show that if $a \mid b$ and $b \mid c$, then $a \mid c$.