Name:

Don't merely state answers, prove your statements. Be sure to show your work!

- 1. (____/28 points) Converging Questions
 - (a) Prove that $\left\langle \frac{3n^2}{n^2 + 2n + 3} \right\rangle$ converges.

(b) Show that $\left\langle \frac{\sin(n)}{n^4 + 1} \right\rangle$ converges.

Hint: Ignore $\sin(n)$, then prove $\sin(n)$ is bounded and use a theorem.

(c) Prove that $\left\langle \frac{n^2+1}{n} \right\rangle$ diverges.

(d) Let $a_n \to A$ and $b_n \to B$. Show that $a_n + b_n \to A + B$.

- 2. (____/20 points) Some set stuff.
 - (a) Let A,B,C,D be sets. Suppose that $A\cup B\subseteq C\cup D,\,A\cap B=\phi,$ and $C\subseteq A.$ Prove that $B\subseteq D.$

(b) Let $f: X \to Y$ and let $T \subseteq Y$. Prove that if f is onto, then $f(f^{-1}(T)) = T$. Point out which "half" of your proof does **not** need the "onto" hypothesis.

- 3. ($\underline{\hspace{0.2cm}}$ /28 points) For each of the following functions, decide if f is 1-1, onto, both, or neither. Prove your answers!
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 5x + 2

(b) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 5x + 2

(c) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(x) = \begin{cases} 2x & x \text{ is even} \\ x+1 & x \text{ is odd} \end{cases}$

(d) Let $g: X \to Y$ and $f: Y \to Z$. Assume that $f \circ g: X \to Z$ is a bijection. If f must be 1-1, prove it. If f might not be 1-1, give a counter-example. If f must be onto, prove it. If f might not be onto, give a counter-example. [A counter-example should specify both f and g and be accompanied by a proof that it is in fact a counter-example.]

4. (___/28 points) Equivalent Nonsense. Recall that for integers a and b, $a \cong b \pmod 4$ if and only if there exists some $k \in \mathbb{Z}$ such that a=b+4k.

(a) Prove that $a \cong b \pmod{4}$ is an equivalence relation on \mathbb{Z} .

(b) List the equivalence classes of this equivalence relation.

(c) Prove that the function $f: \mathbb{Z}_4 \to \mathbb{Z}_{10}$ defined by f([n]) = [5n] is well-defined. $[\mathbb{Z}_m$ are the equivalence classes of integers mod m.]

(d) Let $n \in \mathbb{Z}$ be a sum of squares. [That is there exist integers a and b such that $n = a^2 + b^2$.] Prove that $n \not \equiv 3 \pmod 4$.