Name:			
-------	--	--	--

Don't merely state answers, prove your statements. Be sure to show your work!

- 1. (10 points) Consider theorem L15: $\vdash \neg A \rightarrow (A \rightarrow B)$
 - (a) Show L15 is a tautology using by filling out an abbreviated truth table.

(b) Prove L15 in system L. [You may use the deduction theorem and theorems L1 - L14.] Hint: I have a quick proof using the deduction theorem and lemmas L5 and L10 in mind.

- 2. (10 points) Still in System L...
 - (a) Is " $A \lor B \vdash A$ " provable in L? What about " $A \vdash A \lor B$ "? Justify your answer(s).

(b) Here is my proof of theorem L7: $A \to (B \to C) \vdash B \to (A \to C)...$

1:
$$A \to (B \to C)$$

1:

2:
$$B \to (A \to (B \to C))$$

2:

3:
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

3:

$$4: (A \to B) \to (A \to C)$$

4:

5:
$$B \to ((A \to B) \to (A \to C))$$

<u>5:</u>

6:
$$B \rightarrow (A \rightarrow B)$$

6.

7:
$$B \to (A \to C)$$

7: L3 with A :=, B :=, and C :=

Fill in justifications for each line. I used the usual rules of system L and restricted myself to using lemmas among L1-L6.

3. (10 points) Construct models whose objects are $\ensuremath{\mathbb{Z}}$ (integers) to show that

$$(\forall x P(x)) \to (\exists y Q(\underline{c}, f(y)))$$

is satisfiable but not logically valid. [Note: P(x) and Q(x,y) are predicates, f(x) is a function, and \underline{c} is a constant.]

- 4. (10 points) Proofs in K. You may use the deduction theorem and lower numbered theorems.
 - (a) Prove theorem K7: $\vdash \forall x (A(x) \to B(x)) \to (\forall x A(x) \to \forall x B(x))$

(b) Prove theorem K21: $\vdash \exists x A(x) \rightarrow \exists x (A(x) \lor B(x))$

- 5. (10 points) How about...more proofs?
 - (a) Use induction to show that $1+2+\cdots+n=\frac{n(n+1)}{2}$ for all positive integers n.

(b) Use proof by contradiction to show: For all $x, y \in \mathbb{Z}$, if xy is even, then either x or y is even.

Test #1 – TAKE HOME Due: Mar. 2^{nd} , 2015

Name:							_						
You may	use notes	and your	textbook,	but n	o help	from	other 1	people	[except	myself	and N	[oah]	especially
vour class	mates.												

- 6. (25 points) Redo the in-class portion of the test.
- 7. (15 points) A few more proofs in K. Prove (at least) 5 of the theorems K27 K37.
- 8. (15 points) More proofs!?!
 - (a) Prove that $n! > 2^n$ for all integers $n \ge 4$.
 - (b) Prove that $\sqrt[3]{2}$ is irrational.
 - (c) For any integer n, prove that $n^2 + 2$ is not divisible by 4.