Name:	Be sure to show your work!
-------	----------------------------

1. (____/20 points) Random Group Stuff — Fill out the following table:

G =	What is the identity of G ?	Is G abelian?	Is G cyclic?	What is the order of?	Does G have an element of order 4?
\mathbb{Z}_{40}				30 =	
U(8)				5 =	
D_7				$ x^4y =$	
S_4				(12)(34) =	

Recall: $D_7 = \{1, x, \dots, x^6, y, xy, \dots, x^6y\}$ where $x^7 = 1, y^2 = 1$, and xyxy = 1.

Scratch Work:

- 2. ($\underline{\hspace{0.2cm}}/20$ points) Group or not? Are the following sets with operations groups or not? If G is a group, prove it you may use a subgroup test if it applies. If G fails to be a group, explain what property fails.
 - (a) Let $G = [-1, 1] = \{r \in \mathbb{R} \mid -1 \le r \le 1\}$ with the operation "+" (addition).

(b) Let $G = \left\{ \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} \mid r \in \mathbb{R} \right\}$ with the operation of matrix multiplication.

(a) Write down what the left multiplication operator of y does in D_3 . Then write down the corresponding permutation if we label 1 as 1, x as 2, x^2 as 3, y as 4, xy as 5, x^2y as 6.

The corresponding permutation is...?

(b) Suppose that using Cayley's theorem we found the left multiplication operator of x in D_4 corresponds to (1234)(5678) and y corresponds to (15)(28)(37)(46). What would the left multiplication operator of x^2y correspond to? [Your answer should be a permutation written as a product of disjoint cycles.]

Now write your answer as a product of transpositions. Is this permutation even or odd?

4.	/25	points)	Mod	stuff.

(a) Draw the subgroup lattice of \mathbb{Z}_{44} . Note: $44 = 2^2 \cdot 11$.

(b) List the possible orders of elements in \mathbb{Z}_{44} . Then determine the number of elements of each order.

Order =			
Number of elements =			

(c) Show that $f: \mathbb{Z}_6 \to \mathbb{Z}_4$ defined by f(x) = 2x is a **well-defined** homomorphism.

(d) Ker(f) =

$$f(\mathbb{Z}_6) =$$

Is f 1-1?

Is f onto?

Is f an isomorphism?

- 5. (____/20 points) POOF! ...I mean... PROOFS! [No magic please.]
 - (a) Let G be a group and let $a, b \in G$ such that $(ab)^2 = a^2b^2$. Show that ab = ba.
 - (b) Let G be a group and let $g \in G$. Define the map $\varphi : G \to G$ by $\varphi(x) = gxg^{-1}$. Prove that φ is an isomorphism.

(c) Let G and G' be groups and let $\psi: G \to G'$ be a homomorphism. Suppose that G is cyclic. Show that $\psi(G)$ is abelian. [Extra Credit: Show that $\psi(G)$ is cyclic.]