Name:

Be sure to show your work!

- 1. (12 points) Definitions
- (a) Give the definition of a Cauchy sequence for a sequence $\{x_n\}_{n=1}^{\infty}$.

(b) Let $X \subseteq \mathbb{R}$ be a non-empty set. Give the definition of $\inf(X)$.

- 2. (25 points) Determine which of the following statements are true or false. Circle your answer.
- (a) True / False \mathbb{Q} (the rational numbers) and $\mathbb{R} \mathbb{Q}$ (the irrational numbers) have the same cardinality.
- (b) True / False The set $A = \{r \in \mathbb{Q} \mid 0 < r < \sqrt{2}\}$ is countably infinite.
- (c) True / False If |x-3| > 1, then x > 4.
- (d) True / False If $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then every subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.
- (e) True / False Convergent sequences are bounded.
- (f) True / False Bounded monotone sequences converge.
- (g) True / False If $X \subseteq \mathbb{R}$ is a non-empty set, then we can always conclude that $\inf(X) < \sup(X)$.
- (h) True / False If $\{a_n\}_{n=1}^{\infty}$ converges and $\{b_n\}_{n=1}^{\infty}$ diverges, then $\{a_n+b_n\}_{n=1}^{\infty}$ diverges.
- (i) True / False If $a_n \to A$ and $b_n \to B$, then $a_n/b_n \to A/B$.
- (j) True / False If $\lim_{n\to\infty} a_n = -\infty$, then $\lim_{n\to\infty} 1/a_n = 0$.

3.	(14 points) Examples requested.
(a)	Give an example of a set $A \subseteq \mathbb{R}$ such that $\inf(A) = -4 \notin A$ and $\sup(A) = \infty$.
	Give an example of a $non-monotonic$ sequence which converges to 5.
4. do	(15 points) Let S be a non-empty set of positive real numbers. Moreover, assume S is bounded above. First, why es $\alpha = \sup(S)$ exist? Next, show that $\sup(S^2) \leq \alpha^2$ where $S^2 = \{s^2 \mid s \in S\}$.

(a) Show that $\left\{\frac{2n+3}{n^2+1}\right\}_{n=1}^{\infty}$ converges.

(b) Suppose $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge. Show that $\{a_n+b_n\}_{n=1}^{\infty}$ converges.