
Math 451, 01, Exam #1 October 2007

Answer Key

1. (20 points): If the statement is always true, circle “True” and prove it. If the statement
is never true, circle “False” and prove that it can never be true. If the statement is true in
some cases and false in others, circle “Possible” and give an example and a counter-example.

(a) Let g ∈ G such that g12 = 1.

TRUE / POSSIBLE / FALSE : |g| = 5

If |g| = 5, then g5 = 1 so that g12 = g5 · g5 · g2 = 1 · 1 · g2 = g2 = 1. But this means
that |g| ≤ 2 < 5 = |g| — contradiction!

(b) Define ϕ : G → G by ϕ(x) = x−1.

TRUE / POSSIBLE / FALSE: ϕ is an automorphism of G.

Each element has a unique inverse so that ϕ is a bijection.
Notice if ϕ(ab) = ϕ(a)ϕ(b), then b−1a−1 = (ab)−1 = a−1b−1. Multiply this equation

by ab on the left and ba on the right and get: ba = ab. Conversely if ab = ba, then
(ab)−1 = a−1b−1 so that ϕ(ab) = ϕ(a)ϕ(b). Therefore, ϕ is an automorphism if and only
if G is abelian.

The statement is true for the trivial group (it’s abelian) and the statement is false for
S3 (since it’s not abelian).

(c) Suppose that |G| = 17.

TRUE / POSSIBLE / FALSE: G is abelian.

The order of G is prime. Therefore, G is cyclic and thus abelian. In fact, we must
have that G ∼= Z17.

(d) Let H be a normal subgroup of G.

TRUE / POSSIBLE / FALSE: H × G/H ∼= G

This is true if G = Z6 and H = {0, 2, 4}. Then H ∼= Z3 and G/H ∼= Z2. Therefore,
H × G/H ∼= Z3 × Z2

∼= Z6 = G.

However, this is not true if G = S3 and H = {(1), (123), (132)}. In this case, H ∼= Z3

and G/H ∼= Z2. But H × G/H ∼= Z3 × Z2 6∼= S3 = G since the direct product is abelian
and the symmetric group is not.

(e) TRUE / POSSIBLE / FALSE : S10 has an element of order 28.

Remember that if a permutation is written as a product of disjoint cycles, then its
order is the least common multiple of the length of those cycles. Thus to achieve order
28 we need either a 28-cycle or a 4-cycle and 7-cycle or a 4-cycle and a 14-cycle etc.
The 28-cycle requires at least 28 characters, the 4-cycle and 14-cycle requires at least 18
characters. The best we can do is a 4-cycle and 7-cycle which requires 11 characters. So
we see that Sn has no elements of order 28 unless n ≥ 11.
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2. (20 points): Let T be the group of symmetries of the regular tetrahedron.
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(a) Label the vertices of T using the numbers 1,2,3,4. We know that T acts on this set. Let
ϕ : T → S4 be the homomorphism corresponding to this group action. Is ϕ injective?
Write out all of the elements in the image of ϕ (use cycle notation). Show that T ∼= A4.

Let’s find the elements in ϕ(T ). First, of course, we have the identity: (1). Next,
rotating around the line through vertex 1, we get: (234) and (243). Rotating around
the line through vertex 2, we get: (134) and (143). Rotating around the line through
vertex 3, we get: (124) and (142). Rotating around the line through vertex 4, we get:
(123) and (132). The image is a subgroup so it must be closed under compostion. Notice
(123)(143) = (14)(23) and (123)(124) = (13)(24) and (143)(123) = (12)(34).

We have found a total of 12 elements so far, but this must be everything since |T | = 12
(we can’t map onto a set bigger than T ). Notice that these elements are exactly the even
permuations in S4.

The image of T is

A4 = {(1), (234), (243), (134), (143), (124), (142), (123), (132), (14)(23), (13)(24), (12)(34)}

Since the map is one-to-one, we have a faithful action of the tetrahedron on its vertices.
Also, since the bijective correspondence between T and A4 is a homomorphism, they are
isomorphic.

(b) Determine the order of each element of A4, decompose it into its conjugacy classes, and
write its class equation.

• {(1)} – order 1
• {(234), (124), (132), (143)} – all are order 3
• {(243), (142), (123), (134)} – all are order 3
• {(14)(23), (13)(24), (12)(34)} – all are order 2
The class equation is 12 = 1 + 4 + 4 + 3.

(c) Find all of the normal subgroups of A4 and identify each quotient.

{(1)} and A4 are normal subgroups. Now let search for others.
We need to look for unions of conjugacy classes which make up subgroups. Notice

that 1 + 4 = 5, 1 + 4 + 4 = 9, 1 + 3 + 4 = 8 don’t divide 12. The only possibility is
1 + 3 = 4.

H = {(1), (14)(23), (13)(24), (12)(34)} is a subgroup (since it’s closed under composi-
tion). It’s normal because it’s the union of conjugacy classes.

Finally, A4/A4 is trivial, A4/{(1)} is just A4, and A4/H is isomorphic to Z3 (since its
order is 12/4 = 3 – a prime – it must be cyclic).
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3. (15 points): For each of the following pairs of groups, prove or disprove that they are
isomorphic.

(a) Zn × Z2 and Dn for some n ≥ 3.

These are not isomorphic. The Zn and Z2 are abelian, so their direct product is too.
However, Dn (symmetries of a regular n-gon) is not abelian unless n = 1 or n = 2.

(b) R (under addition) and R>0 (under multiplication).

These are isomorphic. Consider the map ϕ : R → R>0 defined by ϕ(x) = ex. Notice
that ϕ(x + y) = ex+y = exey = ϕ(x)ϕ(y), so it’s a homomorphism. We know that ln(x)
is ex inverse so it’s a bijection (thus an isomorphism).

(c) Z × Z and Z

These are not isomorphic. Z×Z is not cyclic, but Z is. To see that the direct product
isn’t cyclic — suppose that (k, ℓ) generates it. But 〈(k, ℓ)〉 = {(mk,mℓ)} |m ∈ Z}. So
if this is a generator we must have (1, 0) = (mk,mℓ) for some m, but mk = 1 implies
either m = k = −1 or m = ℓ = 1. In both cases, we must have ℓ = 0. But then (0, 1) is
not in 〈(k, ℓ)〉. Thus is cannot generate the whole group.

4. (25 points): Let G be a group and let H be a subgroup of G. We define N = NG(H) =
{g ∈ G | gHg−1 = H} to be the normalizer of H in G.

(a) Show that N is a subgroup of G. What does N = G mean?

Notice that h ∈ H implies that hHh−1 = H since H is a subgroup. Therefore,
H ⊆ N (that is N is not empty). Next, suppose that a, b ∈ N . This means that
aHa−1 = bHb−1 = H. Notice that (ab)H(ab)−1 = a(bHb−1)a−1 = aHa−1 = H. Thus
ab ∈ N . Finally, suppose that a ∈ N (thus aHa−1 = H). Then a−1H(a−1)−1 =
a−1Ha = a−1(aHa−1)a since H = aHa−1. Therefore, a−1H(a−1)−1 = H so that a−1 ∈
N . Therefore, N is a subgroup.

Note: N = G implies that aHa−1 = H for all a ∈ G = N . This means H is a normal
subgroup of G.

(b) Show that H is a normal subgroup of N .

By definition, if x ∈ N , then xHx−1 = H. Therefore, H is a normal subgroup of N .

(c) Let K be a subgroup of G such that H is a normal subgroup of K. Show that K ⊆ N
(this says that N is the biggest subgroup of G in which H is normal).

Let H be a normal subgroup of K. Then xHx−1 = H for all x ∈ K. But xHx−1 = H
implies that x ∈ N . Therefore, K ⊆ N .

(d) Let y ∈ xN . Show that the conjugate subgroups xHx−1 and yHy−1 are equal. How
many (distinct) subgroups are conjugate to H?

If y ∈ xN , then x−1y ∈ N . Therefore, (x−1y)H(x−1y)−1 = H and thus x−1yHy−1x =
H. Unravelling this — multiply by x on left and x−1 on the right — we get that
yHy−1 = xHx−1.

Notice that the converse is also true, if yHy−1 = xHx−1, then (x−1y)H(x−1y)−1 = H
so that x−1y ∈ N . Therefore, y ∈ xN . This means that distinct cosets of N give distinct
subgroups conjugate to H. So the number of cosets of N in G gives the number of
conjugates of H in G.
Answer: The number of conjugates of H in G is [G : NG(H)].



4

5. (20 points): Let M be a proper (6= G) subgroup of G. M is a maximal normal
subgroup if given any other normal subgroup H such that M ⊂ H but H 6= M , then
H = G. Likewise, M is a maximal subgroup if given any other subgroup H such that
M ⊂ H but H 6= M , then H = G.

(a) Find all of the subgroups of Z6. Identify which of these are maximal and maximal
normal. Also, identify all quotients. Looking at a maximal normal subgroup of Zn and
then maximal normal subgroup of that subgroup and so on, what is going on?

Since Z6 is cyclic, it has exactly 1 subgroup of each order dividing 6. These are:
• 〈0〉 = {0} – order 1
• 〈3〉 = {0, 3} – order 2
• 〈2〉 = {0, 2, 4} – order 3
• 〈1〉 = Z6 – order 6

First, note all subgroups of an abelian group are normal.
Next, notice that the only subgroup containing 〈3〉 is Z6 itself. The same is true for

〈2〉. Therefore, these are the maximal (& maximal normal) subgroups.
Quotients:
• Z6/{0} ∼== Z6 (itself)
• Z6/〈3〉 ∼= Z3

• Z6/〈2〉 ∼= Z2.
• Z6/Z6

∼= {0} (the trivial group)
For 〈3〉 we get the following sequence: Z6 ≥ 〈3〉 ≥ {0} whose quotients are isomorphic

to Z2 and Z3.
For 〈2〉 we get the sequence: Z6 ≥ 〈2〉 ≥ {0} whose quotients are isomorphic to Z3

and Z2.
This corresponds to the two different ways of factoring 6 into primes — 6 = 2 ·3 = 3 ·2.
In general, a maximal normal subgroup of Zn will give a quotient isomorphic to Zp for

some prime p dividing n. Picking a maximal normal subgroup of that subgroup will pick
off another prime and so forth. We will end up with a sequence of normal subgroups
whose factors are cyclic of prime order. By doing this, we are essentially just factoring
n into its prime factors.

Example: Z60 ≥ 〈2〉 ≥ 〈4〉 ≥ 〈12〉 ≥ 〈0〉 each subgroup is maximal normal in the
previous one. The quotients are: Z2, Z2, Z3, and Z5 — 2 · 2 · 3 · 5 = 60.

(b) Let M be a maximal normal subgroup of G. Show that G/M is simple.

Recall that a group is simple if it is non-trivial and it has no non-trivial proper normal
subgroups.

Notice that M 6= G so that G/M 6∼= {1} (thus non-trivial).
Let H be a normal subgroup of G/M . Then by one of our correspondence theorems

we know that H = H/M for some normal subgroup H of G such that M ⊆ H. However,
M is maximal normal. Therefore, either H = M (in this case H/M = M/M = {M}
– the trivial subgroup) or H = G (which means H/M = G/M – the whole quotient).
Therefore, G/M has no non-trivial proper normal subgroups, so it is simple.
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Bonus: If M is a maximal subgroup of G which is also a normal subgroup, show that in
fact G/M is cyclic of prime order (abelian simple).

Notice that G/M is non-trivial since G 6= M . Also, G/M has no non-trivial proper
subgroups because any subgroup H of G/M is of the form H = H/M for some subgroup H
of G where M ⊆ H, but then either H = M (H trivial) or H = G (H = G/M).

Let K 6∼= {1} be any group with no non-trivial proper subgroups. First, notice that K
cannot be infinite. If it was, any element of finite order (other than the identity) would
generate a non-trivial proper normal subgroup. If there were no elements of finite order,
there would be an element of infinite order, call it x. Notice then that 〈x2〉 is then a non-
trivial proper normal subgroup (it doesn’t contain x). So K must be finite. By Cauchy’s
theorem if p is a prime dividing the order of K, then there exists some g ∈ K such that
|g| = p. But 〈g〉 is a non-trivial subgroup. Therefore, 〈g〉 = K. So K is cyclic of prime
order.

Now apply this discussion to G/M and we are done.


