
Math 451, 01, Exam #2
Answer Key

1. (25 points): If the statement is always true, circle “True” and prove it. If the statement
is never true, circle “False” and prove that it can never be true. If the statement is true in
some cases and false in others, circle “Possible” and give an example and a counter-example.

(a) Let G be an abelian group of order 16.

TRUE / POSSIBLE / FALSE : The class equation of G is:
16 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 4

Since in an abelian group, xy = yx. This means that yxy−1 = x for all y so that
conjugacy classes are singleton sets. So the class equation for an abelian group is
1 + 1 + · · · + 1 (all ones).

(b) Let G be a non-abelian group of order 14.

TRUE / POSSIBLE / FALSE: The class equation of G is:
14 = 1 + 2 + 2 + 2 + 7

As will be proved in a later problem, the only groups of order 2p (up to isomorphism)
where p is prime are Z2p (cyclic – thus abelian) and Dp (dihedral).

So G ∼= D7 = 〈x, y |x7 = 1, y2 = 1, (xy)2 = 1〉 which has the above class equation.
In fact, for p an odd prime (or any odd number), the class equation of Dp is:

2p = 1 + 2 + · · · + 2 + p

(c) Let G be a non-abelian simple group.

TRUE / POSSIBLE / FALSE : G has a subgroup of index 4.

Quick answer: G has no subgroup of index 4 because if it did, G would act non-trivially
on this subgroup’s left cosets. Non-abelian simple groups cannot act non-trivially on a
set of size ≤ 4 (homework problem).

Long answer: Let G be a non-abelian simple group and suppose that H is a subgroup
of index 4. Then G acts on the left cosets of H (non-trivially). This actions gives a
corresponding homomorphism ϕ : G → S4. The kernel of ϕ is a normal subgroup of G
and since the action is not trivial and G is simple, we must have that the kernel is trivial.
Therefore, G is isomorphic to a subgroup of S4. But we know that subgroups of Sn are
either “all even” or “half and half”. The isomorphic copy of G in S4 can’t be half even,
half odd since this would give a subgroup of index 2 (thus a proper non-trivial normal
subgroup) contradicting the fact that this subgroup is simple. Thus we have that G must
be isomorphic to a subgroup of A4 (which has order 12). But there are no non-abelian
simple groups of order ≤ 12. Thus this is impossible.

(d) Let G = 〈x, y |R〉 where R is a set of 3 relations.

TRUE / POSSIBLE / FALSE: G is finite.

G = 〈x, y |x, y, xy−1〉 is the trivial group (which happens to be finite). [Why? The
first two relations say x = 1 and y = 1. The third relation is overkill – saying – x = y.]

G = 〈x, y |xyx−1y−1, y, y2〉 is infinite cyclic. [Why? The first relation says that xy =
yx. The second relation says y = 1. Again, the third relation is redundant.]

1



2

(e) TRUE / POSSIBLE / FALSE: PSL2(F9) has at least 24 elements of order 5.

The order of G = PSL2(F9) is (1/2)8(9)10 = 23325. Let the number of Sylow 5-
subgroups in G be s. Then by Sylow’s third theorem, we know that s divides 2332 and is
congruent to 1 modulo 5. The divisors of 2332 = 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36,
72. Out of this list, only 1, 6, and 36 are congruent to 1 modulo 5. We know that G is
simple, so 1 is impossible (else our subgroup would be normal). So we are left with the
options 6 and 36. Since subgroups of order 5 can only intersect trivially (5 is prime), we
get 4 new elements of order 5 from each such subgroup. Thus there are at least 4(6) = 24
elements of order 5.

Note: Consider the case s = 6. Then if H is a Sylow 5-subgroup, we have that NG(H)
(the normalizer of H in G) has index 6. This implies (by part (d) above) that G is
isomorphic to a subgroup of A6. But A6 has order 6!/2 = 360 (which is the order of G).
So that G ∼= A6. The elements of order 5 in A6 are precisely the 5 cycles. Therefore, A6

has

(

6

5

)

· (5 − 1)! = 144 elements of order 5 (contradicting the choice s = 6). Therefore,

s = 36 and thus there are (exactly) 36(4) = 144 elements of order 5 in G.

2. (20 points): Let p be a prime and k a positive integer.

(a) Show that a group of order pk has a non-trivial center. Then explain why a group of
order pk is simple if and only if k = 1.

Let G be a group of order pk. The class equation of G is pk = 1 +
∑

i ki (where each
ki divides pk and the “1” comes from the conjugacy class of the identity element).

Now suppose that G has a trivial center. We know that the center of a group is equal to
the union of all of the singleton conjugacy classes. Therefore, since the center is trivial,
we must have that ki > 1. But the ki’s divide pk. Thus ki = pmi for some mi > 0.
Now reduce the class equation modulo p and get 0 ≡ pk = 1 +

∑

i ki ≡ 1 modulo p
(contradiction). Therefore, Z(G) is non-trivial.

Now we consider the simplicity of G. Since Z(G) is non-trivial. We have a non-trivial
normal subgroup. If Z(G) is proper, then G is not simple. So consider the case when
Z(G) = G — that is — G is abelian. Take any g ∈ G, g 6= 1. Then |g| = pℓ some ℓ > 0.

This implies that x = gpℓ−1

is an element of order p. Recall that G is abelian so that
every subgroup is normal. Thus 〈x〉 is a normal subgroup of order p. Thus if G is to be
simple we must have G = 〈x〉. Finally, any group of prime order is cyclic and simple.

To sum up, a group of order pk is simple if and only if k = 1 in which case it is cyclic.

(b) Show that groups of order p2 are abelian. Then classify the groups of order p2.

Let G be a group of order p2 and suppose that G is not abelian. We know (by part (a))
that Z(G) is non-trivial. Thus since G 6= Z(G), we must have that |Z(G)| = p. Consider
x ∈ G such that x 6∈ Z(G). Notice that the centralizer of x contains x itself as well as
the whole center. That is Z(G) ∪ {x} ⊂ Z(x) = {g ∈ G |xg = gx}. Thus |Z(x)| > p so
its order must be p2 (since it is a subgroup thus its order divides the order of G). But
then Z(x) = G which implies that everything in G commutes with x so that x ∈ Z(G)
(contradiction). Therefore, G is abelian.

Now that we know G is abelian, consider the following two cases:
• G has an element of order p2. Therefore, G is cyclic.
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• G has no elements of order p2. So every non-identity element has order p. Let x be
some element of order p. The order of H = 〈x〉 is p. Let y ∈ G − H (y in G but
not in H). Since H has order p, |G − H| = p2 − p > 0 so such a y exists. Also,
the identity is in H so that y has order p. Let K = 〈y〉. Notice that if g ∈ H ∩ K
then g = xi = yj some 0 ≤ i, j < p. If i > 0, then the g.c.d. of i and p is 1. Thus
there exists a, b such that ai + bp = 1 so that ga = xai = xai+bp = x ∈ H ∩ K. Thus
H ⊂ H ∩K and so H = K (contradicting the fact that y is not in H). So i = 0 and
similarly j = 0. Thus H ∩ K = {1} which gives us that |HK| = |H × K| = p2 so
that G = HK. Notice since G is abelian, both H and K are normal in G. Putting
all this together we get that G ∼= H × K ∼= Zp × Zp.

Thus G is either cyclic of order p2 or the direct product of two cyclic groups of order p.

3. (20 points): Classify.

(a) Classify the groups of order 2p where p is an odd prime.

Note: We all ready took care of p = 2 in the previous problem.

Let G be a group of order 2p and let si be the number of Sylow i-subgroups of G (i = 2
and p). Then by Sylow’s third theorem, s2 must divide p (thus it must be 1 or p) and sp

must divide 2 and be congruent to 1 modulo p (thus sp = 1).
Let H be the Sylow p-subgroup and let K be a Sylow 2-subgroup. H and K are cyclic

(since they’re of prime order). Let H = 〈x〉 and let K = 〈y〉. Notice that H ∩ K = {1}
since the order H ∩ K must divide both p and 2 (so its order is 1). This implies that
|HK| = |H × K| = 2p. Therefore, G = HK (G is generated by {x, y}). Finally, notice
that since sp = 1, we have that H is a normal subgroup of G.

Since H is normal, yxy−1 ∈ H = 〈x〉. Thus yxy−1 = xi for some 0 < i < p (if i = 0,

then we would have that x = 1). Recall that y2 = 1, so that x = y2xy−2 = yxiy−1 = xi2 .
Now the order of x is p, therefore, i2 ≡ 1 mod p. That is — p divides i2−1 = (i−1)(i+1).
By Euclid’s lemma, p divides either i − 1 or i + 1.

• Case: p divides i − 1. In this case, notice that i − 1 < p, so we must have that
i − 1 = 0 (i.e. i = 1). Thus yxy−1 = x so that xy = yx. Thus G is abelian and so
K is normal (i.e. s2 = 1). It then follows that G = HK ∼= H × K ∼= Zp × Z2

∼= Z2p

(the last isomorphism is due to the fact that 2 and p are relatively prime).
• Case: p divides i + 1. In this case, 1 < i + 1 ≤ p. Therefore, i + 1 = p (i.e.

i = p − 1). This means that yxy−1 = xp−1 = x−1. Therefore, (xy)2 = 1 so that
G = 〈x, y |xp = 1, y2 = 1, (xy)2 = 1〉 ∼= D2p.

Thus G is either cyclic or dihedral.

(b) Classify the groups of order 99.

Let G be a group of order 99 = 32 · 11 and let si be the number of Sylow i-subgroups
of G.

We know that s3 divides 11 and is congruent to 1 modulo 3. Since 11 is not congruent
to 1 modulo 3, we must have that s3 = 1. Let H be the Sylow 3-subgroup (since s3 = 1,
H is normal).

Next, we know that s11 divides 9 and is congruent to 1 modulo 11. Since 3 and 9 are not
congruent to 1 modulo 11, we must have that s11 = 1. Let K be the Sylow 11-subgroup
(since s11 = 1, K is normal).
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Note that H ∩ K = {1} since the orders of H and K are relatively prime. Thus
|HK| = |H × K| = 99 Keeping in mind that both H and K are normal, we conclude
that G = HK ∼= H × K.

Now H is a group of order 9 = 32. By a previous problem, we know that H ∼= Z9 or
H ∼= Z3 × Z3. K has order 11, so K ∼= Z11.

Remember that we can combine cyclic groups whose orders are relatively prime, so
that G is isomorphic to either Z99 or Z3 × Z33.

4. (25 points): William Wallace would be proud.

(a) State the universal property of a free group F generated by the set X equipped with
mapping i : X → F .

The universal mapping property says: Given any group G paired with a (set) map

f : X → G, there exists a unique group homomorphism f̂ : F → G such that f̂ ◦ i = f .

f
^

X G

F

f

i

(b) Sketch the proof of: If F1 and F2 are free on X, then F1
∼= F2.

F2

F1

i 1

i 2

i 1
^

i 2
^

X

id 1

id 2

Let Fj be equipped with the map ij : X → Fj. By the universal mapping property

for F1, the map i2 : X → F2 lifts to a homomorphism î2 : F1 → F2 (where î2 ◦ i1 = i2).
Likewise, by the universal mapping property for F2, i1 : X → F1 lifts to a homomorphism
î1 : F2 → F2 (where î1 ◦ i2 = i1).

Notice that ij : X → Fj lifts to the identity homomorphism idFj
: Fj → Fj (idFj

◦ ij =

ij). But also, î1◦î2 : F1 → F1 lifts the map i1 (since î1◦î2◦i1 = î1◦i2 = i1). By uniqueness,

we must have that î1 ◦ î2 = idF1
. Likewise, by uniqueness, î2 ◦ î1 = idF2

. Therefore, î1
(and î2) is an invertible homomorphism (i.e. an isomorphism). Thus F1

∼= F2.

(c) Identify the free groups on 0 and 1 generator, then use the universal property to prove
that F is not abelian when |X| > 1.

The free group on zero generators is the trivial group. The free group on 1 generator
is infinite cyclic. Both of these groups are abelian.

Let X have more than 1 element and let F be free on X (with map i : X → F ).
Suppose that F is abelian.
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[Quick proof: Let |X| > 1. Every group generated by |X| or fewer elements is isomor-
phic to some quotient of F . Since S3 is non-abelian and generated by 2 elements, it must
be isomorphic to some quotient of F . But quotients of abelian groups are always abelian.
Thus F cannot be abelian itself.]

Since F is free, it has the universal mapping property. Consider the case when G = S3

and f : X → S3 is defined by f(x0) = (12) for some fixed x0 ∈ X and f(y) = (13) for
all y ∈ X, y 6= x0. By the universal property for F , f must lift to a homomorphism
f̂ : F → S3 where f̂ ◦ i = f . Thus (12), (13) ∈ f̂(F ) ⊆ S3. But these elements generate

S3 so that f̂ is onto. Therefore, we have an abelian group whose homomorphic image is
S3 – a non-abelian group (contradiction). Thus F must be non-abelian.

5. (15 points): Choices: Choose one of the following problems.

I. Use the Todd-Coxeter algorithm to find a permutation representation of the group with
presentation:

〈x, y |x2, y2, xyx−1y−1〉

What is the name of this group?

Step 1:
Relation tables:

x x
1 | | 1

y y
1 | | 1

x y x−1 y−1

1 | | | | 1

Step 2:
Relation tables:

x x

1 | 2 | 1
2 | 1 | 2

y y
1 | | 1
2 | | 2

x y x−1 y−1

1 | 2 | | | 1
2 | 1 | | | 2

Auxiliary tables:
x

1 | 2
2 | 1

x−1

1 | 2
2 | 1

y
1 |
2 |

y−1

1 |
2 |

Step 3:
Relation tables:

x x
1 | 2 | 1
2 | 1 | 2
3 | | 3

y y

1 | 3 | 1
2 | | 2
3 | 1 | 3

x y x−1 y−1

1 | 2 | | 3 | 1
2 | 1 | 3 | | 2
3 | | 2 | 1 | 3

Auxiliary tables:
x

1 | 2
2 | 1
3 |

x−1

1 | 2
2 | 1
3 |

y
1 | 3
2 |
3 | 1

y−1

1 | 3
2 |
3 | 1
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Step 4:
Relation tables:

x x
1 | 2 | 1
2 | 1 | 2
3 | 4 | 3
4 | 3 | 4

y y
1 | 3 | 1
2 | 4 | 2
3 | 1 | 3
4 | 2 | 4

x y x−1 y−1

1 | 2 | 4 | 3 | 1
2 | 1 | 3 | 4 | 2
3 | 4 | 2 | 1 | 3
4 | 3 | 1 | 2 | 4

Auxiliary tables:
x

1 | 2
2 | 1
3 | 4
4 | 3

x−1

1 | 2
2 | 1
3 | 4
4 | 3

y
1 | 3
2 | 4
3 | 1
4 | 2

y−1

1 | 3
2 | 4
3 | 1
4 | 2

The auxiliary tables give us the following permutation representation of G: x is rep-
resented by (12)(34) while y is represented by (13)(24). G = {1, x, y, xy} ∼=
{(1), (12)(34), (13)(24), (14)(23)} ⊂ S4. So G is (isomorphic to) the Klein 4-group (or
Z2 × Z2).

II. Derive the formula for the order of the group PSL2(Fq) where Fq is the finite field of
order q.

Let Fq be the field with q = pk elements.
GL2(q) is the set of all invertible 2 by 2 matrices. Any vector in F

2
q (which has q · q

elements) can appear as the first column of a matrix in GL2(q) with one exception – the
zero vector. So we have q2 − 1 choices for the first column. The second column cannot
be a scalar multiple of the first column. This rules out q vectors. Therefore, we have
q2−q choices for the second column. Thus |GL2(q)| = (q2−1)(q2−q) = (q−1)2q(q+1).

Next, the determinant (of 2× 2 matrices) is a surjective homomorphism from GL2(q)
onto the multiplicative group of non-zero field elements, F

×

q . Since SL2(q) is (basically
by definition) the kernel of the determinant, we have that:

|GL2(q)|

|SL2(q)|
= |F×

q | = q − 1

Therefore, |SL2(q)| = (q − 1)q(q + 1).
Finally, PSL2(q) = SL2(q)/Z where Z = Z(SL2(q)) (the center of SL2). We know that

Z = Z(GL2(q))∩SL2(q) = {aI2 | a ∈ F
×

q }∩SL2(q) = {aI2 | a
2 = 1} Now a polynomial of

degree n cannot have more than n roots in Fq. Therefore, if q is odd, the only elements
in Z are ±I2 (since (±1)2 = 1 and −1 6= 1 when char(Fq) 6= 2). However, if q is even
(i.e. char(Fq) = 2), then (x − 1)2 = x2 − 2x + 1 = x2 − 1 (since 2 = 0). Therefore,
by uniqueness of factorizations, the only solution of x2 = 1 is x = 1. Therefore, Z just
contains the identity matrix. Therefore:

|PSL2(q)| =
|SL2(q)|

|Z|
=

{

(q − 1)q(q + 1)

2
when q is odd

(q − 1)q(q + 1) when q is even


