
> >

> >

(1)(1)

> >

> >

An Introduction to Maple (Calculus II style)

Maple has two main modes: worksheet mode and document mode. In document mode, you can work like you would
in Microsoft Word (editing text, inserting pictures, etc.) but you can also insert equations and have Maple compute for
you. Personally, I don't like using document mode because it is difficult to distinguish between text and maple
commands. Everything gets mixed up.

This document is a "worksheet". In worksheet mode, you have text boxes and prompts.

This is written in a text box. The prompts: "[>" are Maple command prompts. You can put Maple commands there.
When you hit enter, Maple will execute them.

When typing (at a prompt or in a textbox) Maple has two modes: "Text" and "Math". When writing in text mode, you
will see exactly what you're typing. At prompts this means you'll see red text (your commands). In math mode, Maple
will "pre-format" equations doing things like displaying fractions and putting exponents and subscripts where they
belong. I prefer to write in text mode because I like to see what I've typed. Math mode may look prettier, but if
something goes wrong it can be very difficult to track down the problem. To switch between modes you can either hit
the "Text" and "Math" buttons above (top left of the second toolbar) or you can use the "F5" key. Maple defaults to
text mode for textboxes and math mode for command prompts. To change this go to "Tools -> Options" menus, select
the "Display" tab, and change "Input Display" from "2D math" to "Maple notation".

The following commands clear memory and then load up the "plots" and "Student[Calculus1]" packages.

Many commands are preloaded, but not all. Since we'll want to check out some advanced plot tools and see how to
integrate, I've loaded these extra packages.

restart;
with(plots):
with(Student[Calculus1]):

When entering Maple commands "shift-enter" gives you an extra line to type on. "enter" executes what you've already
typed.

Notice that each line ends with either a ":" or ";". Lines ending in a semi-colon are executed and then results/output is
displayed. Lines ending in a colon are executes with output suppressed.

Suppose we wish to find out what is in the "plots" package. Of course, we could open Maple's help or go to Google
(often a great choice -- many Maple tutorials exist out on the web). However, the easiest way to access help is to use
"?"

? plots

What does "Student[Calculus1]" have to offer?

? Student[Calculus1]

Assignment:
Let's assign a variable a value. This is done with ":="

a := 5;
ad 5

(5)(5)

(4)(4)

(6)(6)

> >
(3)(3)

> >

> >

(2)(2)
> >

> >

Now "a" has the value 5. So anytime Maple sees "a" it will substitute "5".

Note:

Maple is case sensitive.
"a" and "A" are not the same.

a^2;
25

A^2;
A2

If I reassign the value for "a" and re-execute commands, Maple will use whatever assigned I gave "a" last.

a := 2;
ad 2

So if I go back up to "a^2", Maple will now print out 4. Things brings up an important point...

Results depend on the order in which you execute commands.

So if you want to have a readable, sensible Maple worksheet, don't jump around! Work from top to bottom.

This also brings up another important point. If you close down Maple, it forgets everything!

So if you close down Maple and then open it back up again, you need to re-execute all commands before continuing
your work.

Arithemetic:
 +, -, *, /, ^ for add, subtract, multiply, divide, and exponeniate.

0+1-2*3/4^5;

509
512

Equations:
"=" is used to equations (not assignments). So writing "a=5" does not give "a" the value "5". Think of it more as
asking, "Is the value of 'a' equal to 5?"

a=10;
2 = 10

Notice that the above equation is false. Our command just stated the equation. To evaluate its truth requires something
more.

We want to use the "evalb" function. This is a member of a family of evaluation functions. "evalb" stands for evaluate
to boolean (i.e. true or false). Other functions like this are: "eval" and "evalf". "eval" is just a generic evaluate function
which prods Maple to do something. "evalf" is evaluate to floating point. This makes Maple give an approximation of
an exact
symbolic answer.

> >

(11)(11)

> >

> >

> >

(10)(10)

> >

> >

> >

(7)(7)

(8)(8)

(9)(9)

(13)(13)

(12)(12)

evalb(a=10);
false

evalf(0+1-2*3/4^5);
0.9941406250

Solving:
To solve an equation you can enter an equation and choose a "solve" function from the context panel to the right.

Note: If the context panel is not open, "right-click" on the blue output and choose "Open Context Panel for more..."

x^2+3*x-6=0;

x2C 3 xK 6 = 0

solve({ (9) });

x =K
3
2
C

33
2

, x =K
3
2
K

33
2

Solve comes in several flavors. "solve" is the generic solver and will try to find all possible exact (symbolic) solutions.
"fsolve" is Maple's numeric solver. It tries to find all solutions approximated in terms of floating point numbers.

Be careful, Maple's solver is not perfect. If you ask Maple to solve something and it comes back blank, that may be
because there is no solution. However, it may just be the case that Maple couldn't find the solution. In the same vein,
"fsolve" sometimes fails to find a solution or just finds one solution when many solutions exist.

To help "fsolve" one can choose "Numerically Solve from Point" and give it a "guess" to help it get started close to the
desired solution.

solve(x^2+3*x-6=0);

K
3
2
C

33
2

,K
3
2
K

33
2

fsolve(x^2+3*x-6=0);
K4.372281323, 1.372281323

If you give solver an expression, it will set it equal to zero and solve.

solve(x^2+3*x-6);

K
3
2
C

33
2

,K
3
2
K

33
2

Important Functions:
Many functions are exactly what you think they should be. Sine, cosine, tangent, the natural logarithm are:
sin(x), cos(x), tan(x), ln(x)

The one that gives many students trouble is the exponential function. It is not "e^x". Instead it is "exp(x)".

The reason "e^x" does not do what we want it to is that Maple sees "e" as a variable. It can be assigned any value. So
to Maple "e^x" behave as we might like, we'd first need the assignment command "e := exp(1);"

Here's a more complicated expression. We will look for roots of this expression (places where the corresponding

> >
> >

> >

> >

> >

> >

> >

(15)(15)

(14)(14)

graph crosses the x-axis). Notice that "solve" fails. "fsolve" picks out the solution "-3.07" and "fsolve" with point "x=
10" picks out a
solution near "10".

solve(exp(-0.1*x+ln(x^2))*sin(x^2));
fsolve(exp(-0.1*x+ln(x^2))*sin(x^2));

K3.069980124

fsolve(exp(-0.1*x+ln(x^2))*sin(x^2),x=10);
10.02651310

Basic Plotting:
To plot an expression. Use the "plot" command. It syntax is as follows:
"plot(thing to plot, variable = left bound .. right bound);"

Plot will automatically scaling the vertical axis as necessary.

plot(exp(-0.1*x+ln(x^2))*sin(x^2),x=-5..15);

x
K5 0 5 10 15

K40

K20

20

40

? plot options
plot(exp(-0.1*x+ln(x^2))*sin(x^2),x=-5..15,scaling=constrained,color=blue);

x
K5 510

K40

K20

20

40

We can plot several things at once by giving the plot command a set of functions to plot.

plot({x^2,sin(x),x-2},x=-3..3);

> >

x
K3 K2 K1 0 1 2 3

K4

K2

2

4

6

8

Alternatively you can use the "display" command to piece together various plots.

The "scaling=constrained" plot option tells Maple not to rescale coordinate axes.

firstPlot := plot(x^2,x=-1..1,color=red);
secondPlot := plot(sin(x),x=-2*Pi..2*Pi,color=blue);
thirdPlot := plot(x-2,x=0..3,color=green);

display({firstPlot,secondPlot,thirdPlot},scaling=constrained);

x
K1 K0.5 0 0.5 1

0.2

0.4

0.6

0.8
1

x

K2 p p
2

p 2 p

K1

K0.5

0.5

1

x
1 2 3

K2

K1

0

1

(18)(18)

(19)(19)

> >

> >

> >

(21)(21)

(17)(17)

> >

(20)(20)

(16)(16)

> >

> >

x

K2 p
K

3 p
2

Kp
K

p
2

0 p
2

p 3 p
2

2 p

K2

K1

1

Pi:
The mathematical constant pi is "Pi" not "pi"

"pi" (lowercase) is a variable which can be assigned any value.

pi := 3;
pd 3

Pi <> pi;
ps 3

evalf(Pi,100);
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825\

342117068

Functions vs. Expressions:
Functions in Maple are structured as follows: "input thing -> what I map input thing to"

Here we can define the square function:

f := x -> x^2;

fd x↦ x2

f(6);
36

Breaking that down "x^2" is the formula used to compute our function, "x -> x^2" says x should
map to the expression "x^2", and then "f := x -> x^2" says our square function should be assigned
to the name "f". In order to print out things nicely, I generally define functions as follows:

f := x -> x^2:
'f(x)' = f(x);

f x = x2

The first line "f := x - > x^2:" actually defines the function whereas the second line prints it out nicely.

(30)(30)

> >

(24)(24)

> >

(22)(22)

> >

> >

> >

(27)(27)

> >

(23)(23)

> >

> >

> >

(26)(26)

(31)(31)

> >
(28)(28)

(25)(25)

(29)(29)

> >

We can evaluate functions as we might expect:

f(-2);
f(Bob);

4

Bob2

Sometimes it is more convenient to use expressions. However, these require the "subs" command
to substitute in (i.e., plug in) values.

g := x^2;

gd x2

subs(x=2, g);
4

Calculus:
differentiate with diff, integrate with int

diff(sin(x),x);
cos x

diff(sin(x),x,x);
Ksin x

diff(sin(x),x,x,x);
Kcos x

diff(sin(x),x$4);
sin x

int(sin(x),x);
Kcos x

int(sin(x),x=0..Pi);
2

Capatalized commands are usually "inert".

Int(sin(x),x=0..Pi) = int(sin(x),x=0..Pi);

0

p
sin x dx = 2

The "DiffTutor" command allows us to see how to differentiate step-by-step.

DiffTutor(x^3*sin(5*x-2),x);

(32)(32)

> >

d
dx

x3 sin 5 xK 2

=
d
dx

x3 sin 5 xK 2 C x3
d
dx

sin 5 xK 2
prod\
uct

= 3 x2 sin 5 xK 2 C x3
d
dx

sin 5 xK 2
powe\
r

= 3 x2 sin 5 xK 2 C x3
d

d_X0
sin _X0

_X0 = 5 xK 2

d
dx

5 xK 2
chain\

= 3 x2 sin 5 xK 2 C x3
d

d_X0
sin _X0

_X0 = 5 xK 2

d
dx

5 x C
d
dx

K2
sum

= 3 x2 sin 5 xK 2 C x3
d

d_X0
sin _X0

_X0 = 5 xK 2

d
dx

5 x
const\
ant

= 3 x2 sin 5 xK 2 C 5 x3
d

d_X0
sin _X0

_X0 = 5 xK 2

d
dx

x
const\
antm\
ultipl\
e

= 3 x2 sin 5 xK 2 C 5 x3
d

d_X0
sin _X0

_X0 = 5 xK 2
ident\
ity

= 3 x2 sin 5 xK 2 C 5 x3 cos 5 xK 2 sin

d
dx

x3 sin 5 xK 2 = 3 x2 sin 5 xK 2 C 5 x3 cos 5 xK 2

The "IntTutor" command allows us to see how to integrate step-by-step.
[Of course, there are many ways to go about finding an integral. Maple doesn't always choose a "good" way to do it!]

IntTutor(x^2*exp(3*x),x);

(41)(41)

> >

> >

> >

(35)(35)

(39)(39)

> >

(34)(34)

> >

> >

(40)(40)

> >

(42)(42)

> >

(37)(37)

> >

(38)(38)

(36)(36)

> >

iterations=10);

Sequences, Lists, and Sets:
In Maple a collection of objects separated by commas is a "sequence".
A sequence beginning and ending with "[" and "]" is a "list".
A sequence beginning and ending with "{" and "}" is a "set".

Sets do not keep items ordered and do not allow duplication.
Lists and sequences are pretty much the same (except for notation).

mySequence := 1,2,4,8,4,2,1;
mySequenced 1, 2, 4, 8, 4, 2, 1

myList := [1,2,4,8,4,2,1];
myListd 1, 2, 4, 8, 4, 2, 1

mySet := {1,2,4,8,4,2,1};
mySetd 1, 2, 4, 8

To get the second item in a sequence or list use "[2]".

mySequence[2];
2

myList[2];
2

"op" gets the contents of a list and "nops" gets the number of
elements in a list.

op(myList);
1, 2, 4, 8, 4, 2, 1

nops(myList);
7

listOfStuff := [1,A,[1,2,3],Pi,squareFun(t)];
listOfStuffd 1, A, 1, 2, 3 , p, squareFun t

listOfStuff[nops(listOfStuff)];
squareFun t

(45)(45)

> >

> >

(47)(47)

> >

(46)(46)

(44)(44)

(43)(43)
> >

> >

> >

The "seq" command creates sequences for you.

seq(i^2,i=0..5);
0, 1, 4, 9, 16, 25

listOfLists := [seq([seq(i*j,i=0..4)],j=0..4)];
listOfListsd 0, 0, 0, 0, 0 , 0, 1, 2, 3, 4 , 0, 2, 4, 6, 8 , 0, 3, 6, 9, 12 , 0, 4, 8, 12, 16

[seq(op(listOfLists[i]),i=1..nops(listOfLists))];
0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 2, 4, 6, 8, 0, 3, 6, 9, 12, 0, 4, 8, 12, 16

Creating a procedure:

hello := proc(x,y)
 local z,i;

 z := x+y;

 for i from 1 to z do
 if i=1 then
 print(cat("Howdy for the ",i, " time."));
 else
 print(cat("Howdy for the ",i, " times."));
 end if:
 end do:

 if z>5 then
 print("I'm tired.");
 else
 print("Let's go again.")
 end if:
end:
hello(1,2);

"Howdy for the 1 time."

"Howdy for the 2 times."

"Howdy for the 3 times."

"Let's go again."

hello(5,4);
"Howdy for the 1 time."

"Howdy for the 2 times."

"Howdy for the 3 times."

"Howdy for the 4 times."

"Howdy for the 5 times."

"Howdy for the 6 times."

"Howdy for the 7 times."

"Howdy for the 8 times."

"Howdy for the 9 times."

"I'm tired."

