Osculating Circles in the Plane  

This sheet creates animations showing plots of planar curves along with their osculating circles and normal lines: Osculating circles (.mw).
 

Initialization   initialization code (.html) 

Example 1: The osculating circles for sine: y = sin(x) and `and`(`<=`(-8, x), `<=`(x, 8.))  

 

> # Consider the sine wave
curve_eq := y=sin(x):
curve_eq;
# We also need a parametrized version of the sine wave
# Please note: Maple uses e_x and e_y to denote the i and j unit vectors
r := t -> <t,sin(t),0>: 'r(t)' = r(t); # We will plot the osculating circles and normal lines for the sine wave # between x=-8 and 8. "5000" is the number of points used by implicitplot # to make the graphs look smooth. "true" tells our procedure to show the # normal lines. "-10,10,-10,10" are x and y ranges for the plot. osculatingCircles(curve_eq,r,-8,8,5000,100,true,-10,10,-10,10); # Click on the plot below and use the buttons above to play the animation.
 

 

 

y = sin(x)
r(t) = Vector[column](%id = 18446744078108598630)
Plot_2d
 

 

Circles for `and`(`<=`(.5, x), `<=`(x, 2.5)) (and without normal lines). 

 

> osculatingCircles(curve_eq,r,0.5,2.5,5000,50,false,-5,10,-10,5);
 

Plot_2d
 

 

Example 2: The osculating circles for the parabola y = `*`(`^`(x, 2)) and `and`(`<=`(-3, x), `<=`(x, 3)). 

 

> curve_eq := y=x^2:
curve_eq;
r := t -> <t,t^2,0>:
'r(t)' = r(t);

osculatingCircles(curve_eq,r,-3,3,5000,100,true,-10,10,-10,20);
 

 

 

y = `*`(`^`(x, 2))
r(t) = Vector[column](%id = 18446744078199205630)
Plot_2d
 

 

Example 3: The osculating circles for a bell-like curve: y = exp(VectorCalculus:-`-`(`*`(`^`(x, 2)))) and `and`(`<=`(-4, x), `<=`(x, 4)). 

 

> curve_eq := y=exp(-x^2):
curve_eq;


r := t -> <t,exp(-t^2),0>:
'r(t)' = r(t);

osculatingCircles(curve_eq,r,-4,4,5000,100,true,-5,5,-5,5);
 

 

 

y = exp(`+`(`-`(`*`(`^`(x, 2)))))
r(t) = Vector[column](%id = 18446744078241866326)
Plot_2d