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What should the Pythagorean theorem look like in higher dimensions? One might
claim that it is the same in all Euclidean spaces because the sum of the squares of the
legs of a right triangle equals the square of the length of the hypotenuse regardless of
dimension. This is not terribly exciting. However, if we shift our perspective a bit, we
are led to more interesting answer.

First, we recast the Pythagorean theorem in terms of projections. Let a vector v =
〈a, b〉 = ai + bj in R2 be projected onto the x and y-axes: projiv = 〈a, 0〉 = ai and
projjv = 〈0, b〉 = bj.

Figure 1: The Pythagorean theorem in 2 dimensions.

The Pythagorean theorem tells us that

‖v‖2 = a2 + b2 = ‖projiv‖2 + ‖projjv‖2, (1)

where the length of v is ‖v‖ =
√
v • v and v • w is the dot product of v and w. This

suggests the picture in Figure 2.
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Figure 2: The Pythagorean theorem in 3 dimensions.

Our 3-dimensional Pythagorean theorem asserts that the square of the area of a par-
allelogram is equal to the sum of the squares of the areas of its projections onto the
coordinate planes. This follows immediately from:∥∥∥∥∥∥
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where the v and w are the sides of the parallelogram. This restating of (1), suggests∥∥∥∥ ∣∣∣∣ i j
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These identities are special cases of a more general identity. Before stating and proving
our general proposition, we establish notation and gather a few facts. Mainly we require
a generalized cross product in n-dimensions.

Cross Products

Let ei be the ith standard, unit vector in Rn. Notice that the dot product in effect
replaces the unit vectors in the first factor of the product by the corresponding components
of the second factor. For example,

(i + 2j + 3k) • (4i + 5j + 6k) = ( 4 ) + 2( 5 ) + 3( 6 ),

so i is replaced by 4, j by 5, and k by 6.
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The generalized cross product in n-dimensions is the determinant

w1 ×w2 × · · · ×wn−1 =

∣∣∣∣∣∣∣∣∣
e1 e2 · · · en
w11 w12 · · · w1n

...
...

...
wn−1 1 wn−1 2 · · · wn−1n

∣∣∣∣∣∣∣∣∣ , (2)

where wi = 〈wi1, wi2, . . . , win〉. As in three dimensions, we calculate the generalized cross
product by expanding (2) by minors:

w1 ×w2 × · · · ×wn−1 = M1e1 −M2e2 + · · ·+ (−1)n+1Mnen ∈ Rn, (3)

where

Mi(w1,w2, . . . ,wn−1) =

∣∣∣∣∣∣∣∣∣
w11 · · · w1 i−1 w1 i+1 · · · w1n

w21 · · · w2 i−1 w2 i+1 · · · w2n
...

...
...

...
wn−1 1 · · · wn−1 i−1 wn−1 i+1 · · · wn−1n

∣∣∣∣∣∣∣∣∣ . (4)

Since the dot product replaces the standard unit vectors with the corresponding com-
ponents of the vector being dotted, for v = 〈v1, . . . , vn〉 ∈ Rn we have

(w1 ×w2 × · · · ×wn−1) • v =

∣∣∣∣∣∣∣∣∣
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...
...

...
wn−1 1 wn−1 2 · · · wn−1n

∣∣∣∣∣∣∣∣∣ .
The most important property of the cross product is that it produces a vector orthogo-

nal to its inputs. Our generalized cross product has this property. For any i = 1, . . . , n−1,
(w1×w2× · · · ×wn−1) • wi = 0 since the row wi would appear twice in the determinant
and a determinant of a matrix with a repeated row is 0.

We should mention that this generalization of the cross product is not new. Readers
familiar with exterior algebra (see [1]) will notice that

w1 ×w2 × · · · ×wn−1 = ∗(w1 ∧w2 ∧ · · · ∧wn−1),

where ∗ is the Hodge dual operator. We also point the interested reader to Massey’s very
accessible paper [2] which classifies all possible cross products in a very general setting.

Pythagorean Theorem

Our next task is to connect the cross product with geometry. It is well known that
determinants yield signed volumes. Specifically, the area of a parallelogram spanned by

v = 〈v1, v2〉,w = 〈w1, w2〉 ∈ R2 is given by the absolute value of

∣∣∣∣v1 v2
w1 w2

∣∣∣∣ = v1w2 − v2w1.

Likewise, the absolute value of

∣∣∣∣∣∣
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w1 w2 w3

∣∣∣∣∣∣ is the volume of the parallelepiped spanned
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by u = 〈u1, u2, u3〉,v = 〈v1, v2, v3〉,w = 〈w1, w2, w3〉 ∈ R3. In general, the absolute value
of the determinant of an n× n matrix can be interpreted as the n-dimensional volume of
the parallelotope spanned by the rows of that matrix. The sign (which we obliterate by
taking absolute values) tracks the parallelotope’s orientation, which in three dimensions
is right or left handedness.

Now let v = w1 × w2 × · · · × wn−1 for wi ∈ Rn. If v = 0, then the wi’s are
linearly dependent (and their (n−1)-dimensional volume is zero). Alternatively, if v 6= 0,
‖v‖ = v • v

‖v‖ . Now v is orthogonal to each wi, and so is orthogonal to the hyperplane

spanned by the wi’s. Thus the n × n determinant ‖v‖ = (w1 × w2 × · · · × wn−1) •
v
‖v‖

is the n-dimensional volume of the parallelotope spanned by the wi’s plus v
‖v‖ . But v

‖v‖
is orthogonal to the wi’s and of length 1, so the n-dimensional volume of the whole
parallelotope equals the (n− 1)-dimensional volume of the parallelotope spanned by the
wi’s, using the claim: “base times height = volume” and sweeping the actual geometry
under the carpet. In summary, ‖w1 × w2 × · · · × wn−1‖ is the (n − 1)-dimensional
volume of the parallelotope spanned by the wi’s. Now we are ready for our n-dimensional
Pythagorean theorem.

Theorem The square of the (n− 1)-dimensional volume of the parallelotope spanned by
w1,w2, . . . ,wn−1 ∈ Rn equals the sum of the squares of the (n− 1)-dimensional volumes
of the projections of this parallelotope onto the coordinate hyperplanes.
Proof: Our cross product v = w1 × w2 × · · · × wn−1 is a vector whose length, as we
have just argued, is the (n − 1)-dimensional volume of the parallelotope spanned by the
wi’s. But the component Mi of v (see (3)) is (in absolute value) the (n− 1)-dimensional
volume of the projection of this parallelotope onto the coordinate hyperplane spanned
by w1, . . . ,wi−1,wi+1, . . . ,wn−1 (see (4)). In summary, taking the norm-squared of (3)
yields our theorem. �

Summary

An n-dimensional generalization of the standard cross product, leads to an n-
dimensional generalization of the Pythagorean theorem.
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