Cross Products
&
An n-dimensional Pythagorean T heorem




The Cross Product
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(0,0,1) are the standard unit vectors.

(1,0,0), j=(0,1,0), and k

i



The Cross Product — Geometrically

The cross product of v and w is orthogonal to both v and w. This
leaves a whole 1-dimensional subspace of possibilities.

Next, the cross product has the same length as the area of the par-
allelogram spanned by v and w. Now we are left with at most two
options.

Finally, the cross product obeys the ‘“right hand rule”. This now com-
pletely determines the cross product.

Can this be done in R?? In R3, we have 3 —2 = 1.
In R" we have n — 7?77 = 1.



A Generalized Cross Product

It turns out that the cross product can be generalized to n-dimensional vectors. Keep-
ing in mind that the cross product is specifying a direction orthogonal (i.e. perpen-
dicular) to given vectors, we need to specify n— 1 directions in n-dimensional space so

only 1 direction is left. So why does the cross product have 2 inputs in 3 dimensions?
It’s as simple as 2+ 1 = 3.

Let w; = (w11,w12,...,w1n>, Wo = <w21,w22,...,w2n>, vy, Wpo1 = <wn_1 1, Wp—1 2,...,wn_1n>be our
n — 1 input vectors in R" (n-dimensional space). Then we can form a sort of cross
product (which matches the regular cross product in 3-dimensions) as follows:

el e2 o o o en

wi1 wi2 o Win

Wi XWo X+ XW,_1=| W21 w22 W2n
Wn—-11 Wp—-12 =+ Wnp—-1n

Here, e; = (1,0,0,...,0), e2 = (0,1,0,...,0) etc. are the standard unit vectors.



The Cross Product in 2D
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Notice that (vy,v2) e (v2, —v1) =0 and |[{vy,v2)|| = [[(v2, —v1)].



The Dot Product: An Odd Perspective

Computing a dot product is easy:

(1,2,3) e (4,5,6) = 1(4) + 2(5) + 3(6) = 32

We simply multiply the corresponding components and then sum the

resulting products.

Here's a second way of thinking about this computation:

Rewrite our

vectors in terms of standard unit vectors: 1i+ 2j+ 3k and 4i+ 5j + 6k.
To compute the dot product, simply replace each unit vector with the
corresponding component of the second vector:

(1i+ 2j + 3k) o (4i+ 5j+ 6k) = 1[4

+ 2

+ 3

= 32



The Dot Product: An Odd Perspective

So dotting wq X wo X --- X W,,_1 With a vector w, = (w,,1,w,,2,..., Wnn)
amounts to replacing the standard unit vectors along the top row of the
determinant defining the cross product with the components of w,,.

Wn1 Wn2 Wnn
w w e o o w
Wn e (Wl X Wo X -+ X Wn—l) — .11 .12 1n
Wp—11 Wnpn—-12 "~ Wp—-1n

From multivariable calculus we might recognize the triple scalar product:

ul u2 U3
U_o(VXW)Z V1 V2 VU3
w1, wp w3




Determinant = Signed Volume

Notice wq X wo X --- X w,,_q1 IS orthogonal to each of the vectors w1,
wWo, ..., W,_1 Since the determinant of a matrix with a repeated row is
Zero.

Next, recall [in the graduate school sense] from your introduction to
linear course that determinants compute volumes. In particular, the
determinant of a 2 x 2 matrix:

vl U2
= V1w — w1V
w1 wo
is the area of the parallelogram spanned by v = (vq,vp) and w =

(w1,wo)...well almost. It is the area if v and w are oriented in a coun-
terclockwise manner and negative the area if oriented in a clockwise
manner or zero if the vectors are parallel.



Determinant = Signed Volume
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The parallelepiped spanned by the vectors a,b, and c

In the same manner a 3 x 3 determinant computes + the volume of the

parallelepiped spanned by its rows (4 if right-handed, — if left handed,
and O if coplanar).

In general n vectors span a parallelotope and the corresponding deter-
minant computes + its n-dimensional volume.



What is le X woy X -+ X Wn—lH?

Let v=wy X - X W,_1.

V[2 vev \% _ _ _
Then ||v|| = = = (—— ] eV is an n x n determinant, so it
[[v]] V]| V]|
computes the (n-dimensional) volume of the parallelotope spanned by
W1,Wo,...,W,_1, and L.
[1v]]

For a parallelotope, “volume = base x height”. But ﬁ IS @ unit vector
orthogonal to wi,w»,...,w,_1. Thus the volume is equal to the ((n—1)-
volume) of the base (the parallelotope spanned by wq,wo,...,W,_1)
times the height = 1.

This means that [|[w1 x--- xw,_1]| is the (n — 1)-dimensional volume of
the parallelotope spanned by wq,...,w,_1.



Characterizing the Generalized Cross Product

If v=wy x---xXxw,_1, We find that the vectors v,wi,wo,...,w,_1 are
positively oriented in some sense (generalizing counterclockwise in R2
and right handed in R3).

Thus our generalized cross product is completely determined by. ..

e being orthogonal to its inputs

e having its length is equal to the volume of the parallelotope spanned
by its inputs

e completing the list of inputs to a positively oriented basis

[Fine Print: Unless the inputs are linearly dependent.
In such a case, we just get the zero vector.]

Note: This cross product is compatible with rotations. Specifically, if
R is a rotation, then
R(Wl) X R(WQ) X X R(Wn—l) — R(Wl X Wo X -+ X Wn—l)'



Application:

An n-Dimensional Pythagorean Theorem



The 2D-Theorem Revisited

Projections in 2 dimensions. ..

(@, )]12 = 110, B)[|% + |I{a, O) ||

Instead of viewing the
classical Pythagorean
theorem as a statement
about right triangles,
we can view it as a
statement about a vec-
tor and its projections
(think shadows) on the
x- and y-axes.

The theorem now says
that the square of the
length of a vector is
equal to the sum of the
squares of the lengths of
its projections.



The Pythagorean Theorem in 3D

Projections in 3 dimensions. ..

For the 3D version of the the-
orem we should use a paral-
lelogram (a 2-dimensional ob-
ject) instead of a vector (a 1-
dimensional object). Now in-
stead of a statement about

lengths, we have a statement
about areas.

The 3D version of the theorem
says that the sum of the squares
of the areas of the projections of
a parallelogram is equal to the

T sum of the square of the area of

that parallelogram.
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The Pythagorean Theorem in n-Dimensions

The n-dimensional Pythagorean theorem says that the square of the n-dimensional
volume of a (n — 1)-dimensional parallelotope in n-dimensional space is equal to the
sum of the squares of the n-dimensional volumes of the projections of this parallelotope
onto each of the coordinates planes in n-dimensional space.

This theorem follows quite easily from basic vector and determinant properties. Here
is the statement of the theorem in terms of generalized cross products:

In this notation, the classical (i.e. 2D) Pythagorean theorem looks like:
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Strange Algebras and Other Cross Products



Exterior Algebras

Let V be an n-dimensional vector space (over R). Let A be an operation
on vectors such that. ..

e This product is bilinear: (v4+w)Au=vAu+wAu vA(u+w) =
vAu+vAw, and (cv) Aw=c(vAw)=vA((W).

e This product is alternating (equivalently skew-symmetric): vAv =20
(equivalently vAw = —w A V).

We get AV = OV AV @ - AW =RV @ --- which is called the
exterior algebra (or Grassmann algebra) over V.

Example: Consider V. =R3. Then OV =R, AV = span{i, j, k},
NV =span{iAj,jAk kAi}l, and BV = span{iAjAk}.

(i4+2k)A(2i—j+3k) = iA (2i—j+3k) + 2k A (2i — j+ 3k) =
2iAi—iNj+3iAk+4kAi—2kAj+6kAk = —iAj—3kAit+4kAi+2jAk =
CiAj+2jAk+ kAL



Exterior Algebras: Hodge Dual

It turns out that the dimension of the kth—piece of the exterior algebra is

dim(AFV) = (Z) - k!(n”l &yr Notice that dim(AFV) = (Z) — (n " k) —

dim(AN*~FV). This points towards the following operation:

The Hodge Dual is an isomorphism, %, between AV and A%V . For
example: Given the standard unit vector basis for R, we replace
e;1 Nex N\ --- ANeg with €41 Nepgo N -+ Nen.

Example: Consider V. = R3. Then (i) = jA k, x(j) = k A1, and
x(k) =iANj. Also, x(in]j) =k etc.

*(—iNj+2jAk+kAl)=-k4+2i4+j=2i+j— k.

Notice that (i4+ 2k) x (2i —j+ 3k) = 2i+ j — k. Coincidence?



Exterior Algebras & The Cross Product

Let wq,...,w,_1 € R" (assuming n > 2). Then

Wi XWo X+ XWp_1=*x(W{ AW A---AW,_1)

In particular, if v,w € R3, then

VXW=%(VAW)



Binary Cross Products

Let x : R™ x R™ — R"™ be a bilinear product such that
e For all v, w e R", v x w is orthogonal to both v and w.

o Forall v,w e R, ||[vx w||2=|v|]?]|w]?— (vew)?

then n =3 or 7.

Why?

Consider (a,v),(b,w) € R@R"™ = A. If such a cross product exists, we
can define (a,v)(b,w) = (ab—vew,aw + bv + v X w).

It is easy to see that this product is bilinear and has a two-sided mul-
tiplicative unit (1,0). Also, using the properties of x above, one can

show that [(a, v) (b, w)[| = [|(a, V)|l[|(b, w)]|

which means that A is a normed division algebra.

But normed division algebras are very rare.



Normed Division Algebras

Theorem [Hurwitz]: (Up to isomorphism) The only normed division
algebras are: R, C, H (the quaternions), and O (the octonions). These
algebras are distinguished by: R is an ordered field, C is algebraically
closed, H is associative but not commutative, and O is not associative.

A power associative algebra is an algebra such that every 1-dimensional
subalgebra is associative. An alternative algebra is an algebra such that
every 2-dimensional subalgebra is associative. The word “normed” can
be swapped with the word "alternative” in the theorem above [this
version is due to Zorn].



Quaternions

“Circle of Doom”
H={a+bi+cj+dk|a,b,c,d € R}.
i2=j2=k?= -1 and ij =k, ji = —k etc.

For pure imaginary quaternions: v,w we have VW =V X W — V e W,



Octonions

e,
e
AE/
7
e —<¢ [

—
€, < €;

O ={ag +aje; +azexr +---+ayer | ag,a1,...,a7 € R}

e% =e% == =e% = —1 and eje5 = eg, €e3e7 = e, etcC.

Pure imaginary octonions correspond to vectors in v,w & R,
Then vw = v X W — VvV e W.



Binary Cross Products

The previous theorem about binary cross products can be weakened. . .

Let x : R™" x R" — R"™ be a continuous product such that
e For all v,w € R", v x w is orthogonal to both v and w.
e For all non-parallel vectors v, w € R", vxw # 0

then n =3 or 7.

Moreover, if in addition, whenever R is a rotation, we have
R(vxw)= R(v) x R(w) for all v, w € R", then n = 3.

So in the end, maybe there really is only one cross product. .. Hmmm. ..



Other Cross Products?

Beno Eckmann proposed the following definition:

An r-airy product x on R"™ is a vector cross product if x is continuous,
the product is orthgonal to its inputs: (wq X -+ X Wr) e w; = 0 for each
j, and ||wqi X --- x wy||2 = det(w; o w;).

Eckmann and Whitehead then were able to establish that vector cross
products only exists if. ..

e nisevenand r=1

e r=n—1

e n=7and r =2

e n=8and r=3

This result was established using methods from algebraic topology.



