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An n-dimensional Pythagorean Theorem



The Cross Product

Given v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉, the cross product of v and

w is

v ×w =

∣∣∣∣∣∣
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w1 w2 w3

∣∣∣∣∣∣ =

∣∣∣∣v2 v3

w2 w3

∣∣∣∣ i − ∣∣∣∣v1 v3

w1 w3

∣∣∣∣ j +

∣∣∣∣v1 v2

w1 w2

∣∣∣∣k
=

〈
v2w3 − v3w2, −(v1w3 − v3w1), v1w2 − v2w1

〉
i = 〈1,0,0〉, j = 〈0,1,0〉, and k = 〈0,0,1〉 are the standard unit vectors.



The Cross Product – Geometrically

The cross product of v and w is orthogonal to both v and w. This

leaves a whole 1-dimensional subspace of possibilities.

Next, the cross product has the same length as the area of the par-

allelogram spanned by v and w. Now we are left with at most two

options.

Finally, the cross product obeys the “right hand rule”. This now com-

pletely determines the cross product.

Can this be done in Rn? In R3, we have 3− 2 = 1.

In Rn, we have n− ??? = 1.



A Generalized Cross Product
It turns out that the cross product can be generalized to n-dimensional vectors. Keep-
ing in mind that the cross product is specifying a direction orthogonal (i.e. perpen-
dicular) to given vectors, we need to specify n−1 directions in n-dimensional space so
only 1 direction is left. So why does the cross product have 2 inputs in 3 dimensions?
It’s as simple as 2 + 1 = 3.

Let w1 = 〈w11, w12, . . . , w1n〉, w2 = 〈w21, w22, . . . , w2n〉, . . . , wn−1 = 〈wn−1 1, wn−1 2, . . . , wn−1 n〉be our
n − 1 input vectors in Rn (n-dimensional space). Then we can form a sort of cross
product (which matches the regular cross product in 3-dimensions) as follows:

w1 ×w2 × · · · ×wn−1 =

∣∣∣∣∣∣∣∣∣
e1 e2 · · · en
w11 w12 · · · w1n

w21 w22 · · · w2n
... ... ...

wn−1 1 wn−1 2 · · · wn−1 n

∣∣∣∣∣∣∣∣∣
Here, e1 = 〈1,0,0, . . . ,0〉, e2 = 〈0,1,0, . . . ,0〉 etc. are the standard unit vectors.



The Cross Product in 2D

×(〈v1, v2〉) =

∣∣∣∣∣ i j
v1 v2

∣∣∣∣∣ = 〈v2,−v1〉

Notice that 〈v1, v2〉 • 〈v2,−v1〉 = 0 and ‖〈v1, v2〉‖ = ‖〈v2,−v1〉‖.



The Dot Product: An Odd Perspective

Computing a dot product is easy:

〈1,2,3〉 • 〈4,5,6〉 = 1(4) + 2(5) + 3(6) = 32

We simply multiply the corresponding components and then sum the

resulting products.

Here’s a second way of thinking about this computation: Rewrite our

vectors in terms of standard unit vectors: 1i+ 2j+ 3k and 4i+ 5j+ 6k.

To compute the dot product, simply replace each unit vector with the

corresponding component of the second vector:

(1i + 2j + 3k) • (4i + 5j + 6k) = 1 4 + 2 5 + 3 6 = 32



The Dot Product: An Odd Perspective

So dotting w1 ×w2 × · · · ×wn−1 with a vector wn = 〈wn1, wn2, . . . , wnn〉
amounts to replacing the standard unit vectors along the top row of the

determinant defining the cross product with the components of wn.

wn •
(
w1 ×w2 × · · · ×wn−1

)
=

∣∣∣∣∣∣∣∣∣
wn1 wn2 · · · wnn

w11 w12 · · · w1n
... ... ...

wn−1 1 wn−1 2 · · · wn−1 n

∣∣∣∣∣∣∣∣∣
From multivariable calculus we might recognize the triple scalar product:

u • (v ×w) =

∣∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣∣



Determinant = Signed Volume

Notice w1 × w2 × · · · × wn−1 is orthogonal to each of the vectors w1,

w2, . . . , wn−1 since the determinant of a matrix with a repeated row is

zero.

Next, recall [in the graduate school sense] from your introduction to

linear course that determinants compute volumes. In particular, the

determinant of a 2× 2 matrix: ∣∣∣∣∣v1 v2
w1 w2

∣∣∣∣∣ = v1w2 − w1v2

is the area of the parallelogram spanned by v = 〈v1, v2〉 and w =

〈w1, w2〉...well almost. It is the area if v and w are oriented in a coun-

terclockwise manner and negative the area if oriented in a clockwise

manner or zero if the vectors are parallel.



Determinant = Signed Volume

The parallelepiped spanned by the vectors a,b, and c

In the same manner a 3×3 determinant computes ± the volume of the

parallelepiped spanned by its rows (+ if right-handed, − if left handed,

and 0 if coplanar).

In general n vectors span a parallelotope and the corresponding deter-

minant computes ± its n-dimensional volume.



What is ‖w1 × w2 × · · · × wn−1‖?

Let v = w1 × · · · ×wn−1.

Then ‖v‖ =
‖v‖2

‖v‖
=

v • v

‖v‖
=

(
v

‖v‖

)
• v is an n × n determinant, so it

computes the (n-dimensional) volume of the parallelotope spanned by

w1,w2, . . . ,wn−1, and
v

‖v‖
.

For a parallelotope, “volume = base × height”. But v
‖v‖ is a unit vector

orthogonal to w1,w2, . . . ,wn−1. Thus the volume is equal to the ((n−1)-

volume) of the base (the parallelotope spanned by w1,w2, . . . ,wn−1)

times the height = 1.

This means that ‖w1× · · · ×wn−1‖ is the (n− 1)-dimensional volume of

the parallelotope spanned by w1, . . . ,wn−1.



Characterizing the Generalized Cross Product

If v = w1 × · · · ×wn−1, we find that the vectors v,w1,w2, . . . ,wn−1 are

positively oriented in some sense (generalizing counterclockwise in R2

and right handed in R3).

Thus our generalized cross product is completely determined by. . .

• being orthogonal to its inputs

• having its length is equal to the volume of the parallelotope spanned

by its inputs

• completing the list of inputs to a positively oriented basis

[Fine Print: Unless the inputs are linearly dependent.

In such a case, we just get the zero vector.]

Note: This cross product is compatible with rotations. Specifically, if

R is a rotation, then

R(w1)×R(w2)× · · · ×R(wn−1) = R(w1 ×w2 × · · · ×wn−1).



Application:

An n-Dimensional Pythagorean Theorem



The 2D-Theorem Revisited

Projections in 2 dimensions. . .

‖〈a, b〉‖2 = ‖〈0, b〉‖2 + ‖〈a,0〉‖2

Instead of viewing the
classical Pythagorean
theorem as a statement
about right triangles,
we can view it as a
statement about a vec-
tor and its projections
(think shadows) on the
x- and y-axes.

The theorem now says
that the square of the
length of a vector is
equal to the sum of the
squares of the lengths of
its projections.



The Pythagorean Theorem in 3D

Projections in 3 dimensions. . .

For the 3D version of the the-
orem we should use a paral-
lelogram (a 2-dimensional ob-
ject) instead of a vector (a 1-
dimensional object). Now in-
stead of a statement about
lengths, we have a statement
about areas.

The 3D version of the theorem
says that the sum of the squares
of the areas of the projections of
a parallelogram is equal to the
sum of the square of the area of
that parallelogram.

∥∥∥∥∥∥
∣∣∣∣∣∣
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v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣
∥∥∥∥∥∥
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︸ ︷︷ ︸
Original Parallelogram
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i j k
0 v2 v3

0 w2 w3

∣∣∣∣∣∣
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2

︸ ︷︷ ︸
yz-Plane Projection

+
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i j k
v1 0 v3

w1 0 w3

∣∣∣∣∣∣
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︸ ︷︷ ︸
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+
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v1 v2 0
w1 w2 0
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∥∥∥∥∥∥

2
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The Pythagorean Theorem in n-Dimensions
The n-dimensional Pythagorean theorem says that the square of the n-dimensional
volume of a (n − 1)-dimensional parallelotope in n-dimensional space is equal to the
sum of the squares of the n-dimensional volumes of the projections of this parallelotope
onto each of the coordinates planes in n-dimensional space.

This theorem follows quite easily from basic vector and determinant properties. Here
is the statement of the theorem in terms of generalized cross products:∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣
e1 e2 · · · en
w11 w12 · · · w1n

... ... ...
wn−1 1 wn−1 2 · · · wn−1n
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0 w12 · · · w1n
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e1 e2 · · · en
w11 0 · · · w1n

... ... ...
wn−1 1 0 · · · wn−1n
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In this notation, the classical (i.e. 2D) Pythagorean theorem looks like:∥∥∥∥ ∣∣∣∣ i j
a b
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=
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Strange Algebras and Other Cross Products



Exterior Algebras

Let V be an n-dimensional vector space (over R). Let ∧ be an operation

on vectors such that. . .

• This product is bilinear: (v + w) ∧ u = v ∧ u + w ∧ u, v ∧ (u + w) =

v ∧ u + v ∧w, and (cv) ∧w = c(v ∧w) = v ∧ (w).

• This product is alternating (equivalently skew-symmetric): v ∧ v = 0

(equivalently v ∧w = −w ∧ v).

We get ∧V = ∧0V ⊕ ∧1V ⊕ · · · ∧nV = R ⊕ V ⊕ · · · which is called the

exterior algebra (or Grassmann algebra) over V .

Example: Consider V = R3. Then ∧0V = R, ∧1V = span{i, j,k},
∧2V = span{i ∧ j, j ∧ k,k ∧ i}, and ∧3V = span{i ∧ j ∧ k}.

(i + 2k) ∧ (2i− j + 3k) = i ∧ (2i− j + 3k) + 2k ∧ (2i− j + 3k) =

2i∧ i− i∧ j+3i∧k+4k∧ i−2k∧ j+6k∧k = −i∧ j−3k∧ i+4k∧ i+2j∧k =

−i ∧ j + 2j ∧ k + k ∧ i.



Exterior Algebras: Hodge Dual

It turns out that the dimension of the kth-piece of the exterior algebra is

dim(∧kV ) =
(n
k

)
=

n!

k!(n− k)!
. Notice that dim(∧kV ) =

(n
k

)
=
( n

n− k

)
=

dim(∧n−kV ). This points towards the following operation:

The Hodge Dual is an isomorphism, ?, between ∧kV and ∧n−kV . For

example: Given the standard unit vector basis for Rn, we replace

e1 ∧ e2 ∧ · · · ∧ ek with ek+1 ∧ ek+2 ∧ · · · ∧ en.

Example: Consider V = R3. Then ?(i) = j ∧ k, ?(j) = k ∧ i, and

?(k) = i ∧ j. Also, ?(i ∧ j) = k etc.

?(−i ∧ j + 2j ∧ k + k ∧ i) = −k + 2i + j = 2i + j− k.

Notice that (i + 2k)× (2i− j + 3k) = 2i + j− k. Coincidence?



Exterior Algebras & The Cross Product

Let w1, . . . ,wn−1 ∈ Rn (assuming n > 2). Then

w1 ×w2 × · · · ×wn−1 = ?(w1 ∧w2 ∧ · · · ∧wn−1)

In particular, if v,w ∈ R3, then

v ×w = ?(v ∧w)



Binary Cross Products

Let × : Rn × Rn → Rn be a bilinear product such that

• For all v,w ∈ Rn, v ×w is orthogonal to both v and w.

• For all v,w ∈ Rn, ‖v ×w‖2 = ‖v‖2‖w‖2 − (v • w)2

then n = 3 or 7.

Why?

Consider (a,v), (b,w) ∈ R ⊕ Rn = A. If such a cross product exists, we

can define (a,v)(b,w) = (ab− v • w, aw + bv + v ×w).

It is easy to see that this product is bilinear and has a two-sided mul-

tiplicative unit (1, 0). Also, using the properties of × above, one can

show that ‖(a,v)(b,w)‖ = ‖(a,v)‖‖(b,w)‖

which means that A is a normed division algebra.

But normed division algebras are very rare.



Normed Division Algebras

Theorem [Hurwitz]: (Up to isomorphism) The only normed division

algebras are: R, C, H (the quaternions), and O (the octonions). These

algebras are distinguished by: R is an ordered field, C is algebraically

closed, H is associative but not commutative, and O is not associative.

A power associative algebra is an algebra such that every 1-dimensional

subalgebra is associative. An alternative algebra is an algebra such that

every 2-dimensional subalgebra is associative. The word “normed” can

be swapped with the word “alternative” in the theorem above [this

version is due to Zorn].



Quaternions

“Circle of Doom”

H = {a + bi + cj + dk | a, b, c, d ∈ R}.

i2 = j2 = k2 = −1 and ij = k, ji = −k etc.

For pure imaginary quaternions: v,w we have vw = v ×w − v • w.



Octonions

O = {a0 + a1e1 + a2e2 + · · ·+ a7e7 | a0, a1, . . . , a7 ∈ R}

e2
1 = e2

2 = · · · = e2
7 = −1 and e1e5 = e6, e3e7 = e1, etc.

Pure imaginary octonions correspond to vectors in v,w ∈ R7.

Then vw = v ×w − v • w.



Binary Cross Products

The previous theorem about binary cross products can be weakened. . .

Let × : Rn × Rn → Rn be a continuous product such that

• For all v,w ∈ Rn, v ×w is orthogonal to both v and w.

• For all non-parallel vectors v,w ∈ Rn, v ×w 6= 0

then n = 3 or 7.

Moreover, if in addition, whenever R is a rotation, we have

R(v ×w) = R(v)×R(w) for all v,w ∈ Rn, then n = 3.

So in the end, maybe there really is only one cross product. . . Hmmm. . .



Other Cross Products?

Beno Eckmann proposed the following definition:

An r-airy product × on Rn is a vector cross product if × is continuous,

the product is orthgonal to its inputs: (w1× · · · ×wr) • wj = 0 for each

j, and ‖w1 × · · · ×wr‖2 = det(wi • wj).

Eckmann and Whitehead then were able to establish that vector cross

products only exists if. . .

• n is even and r = 1

• r = n− 1

• n = 7 and r = 2

• n = 8 and r = 3

This result was established using methods from algebraic topology.


