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Abstract

This paper is the second of a pair of papers that describe the topological characteristics of
the set of real numbers R and real-valued functions on R, which are the underlying tools for
justifying why continuity implies the existence of intermediate and extreme values. As in the
first, this paper introduces some topological concepts and then follows with a concise proof
of a well known calculus theorem. The Extreme Value Theorem is proven using topology.

1 Introduction

Continuity, connectedness, and compactness are recognized as three of topology’s fundamental
notions. This paper has three purposes: It introduces the reader to the concept of compactness;
it examines the Extreme Value Theorem, a theorem commonly seen and employed in classes as
early as algebra and precalculus; and it integrates these ideas by providing a topological proof
of this theorem in a manner accessible by high school and college students.

In our previous paper (Cook, et al., 2016), we broadly defined topology as a study of spaces
and distinguished between characteristics that might be considered topological as opposed to
algebraic or geometric. Topological characteristics are often defined on subsets of spaces, when
spaces are thought of as collections of elements. In particular, we defined connected sets and
open sets. Here we restate the latter.

Definition 1.1. (Open Sets). Let U ⊆ R. We say that U is open if U can be obtained as the
union of some collection of open intervals.

In (Cook, et al., 2016) it was shown how the topological definition of continuity, while
looking quite different on the surface, is equivalent to the classical definition of continuity. With
continuity and connectedness, we proved the Intermediate Value Theorem. In this paper, we
explore compactness. This property is required for the proof of the Extreme Value Theorem.

Theorem 1.2. (Extreme Value Theorem). Let f : R→ R be a continuous function. Given
a < b, there exist m,M ∈ [a, b] such that f(m) ≤ f(x) ≤ f(M) for all a ≤ x ≤ b.

Guaranteeing, that if a function defined on a closed, bounded interval is continuous, then it
will achieve both a minimum and maximum value on that interval, this theorem is the theoretical
bedrock on which we build all of our optimization techniques in the study of calculus. Once the
definition of compactness is investigated, we will characterize the compact subsets of the real
line. Then, finally, we will prove the Extreme Value Theorem.
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2 Recall Continuity and Open Sets

Recall that topology includes the study of continuity and that a topologist defines continuity
directly in terms of open sets instead of distances (i.e. epsilons and deltas). Again, we will focus
on the topology of the real line, R, and by topology we mean the collection of open sets of R.

Equivalent to the earlier stated definition of a set that is open, if for each a ∈ A we can find
an open interval I = (b, c) such that a ∈ I (i.e. b < a < c) and I ⊆ A (i.e. if b < x < c, then
x ∈ A), then A is an open set. Intuitively this means that a set is open if given any point in
that set, then other points “close by” must also belong to that set.

Open intervals are quintessential open sets. Anytime someone mentions an open set in R,
thinking of an open interval is a good first approximation. For future reference we recall the
following basic properties of open sets:

• ∅ = {} (the emptyset) and R are open.

• Intersecting finitely many open sets yields an open set.

• The union of any collection of open sets yields an open set.

In fact, these three properties are what makes the collection of open sets of R a topology on R
(known as the standard topology).

In our previous paper, we discussed the concept of continuity in detail. We showed that the
topologist’s definition of continuity matches the classical epsilon-delta definition. Here we will
utilize the topological definition of continuity.

Definition 2.1. (Continuous Functions). A function f : R → R is continuous if for every
open set V ⊆ R, we have that f−1(V ) = {x ∈ R | f(x) ∈ V } is open. Briefly, f is continuous if
the pre-image of any open set, is itself open.

3 Compactness

At first glance, compactness may seem a very strange property. It has somewhat of a checkered
past, in that the current definition of compactness has not always been agreed upon as the
best way of describing the property. In fact, early twentieth century mathematicians had three
distinct yet equivalent definitions with which to work (Chandler, R. & Faulkner, G.). The choice
of definition would often be the result of personal choice or professional training. By the mid
twentieth century, these concepts were distilled down to the following rather clean definition
that most topologists are brought up on today:

Definition 3.1. (Open Covers). Let A ⊆ R. Let U be a collection of open sets (note that A
is a set, while U is a set of sets). We say that U is an open cover of A if A is contained in the
union of the elements of U (i.e. for every a ∈ A there is at least one U ∈ U with a ∈ U).

As an example, the set A = [−1, 2] ∪ {3} is covered by U = {(n, n + 3) | n an integer}. In
fact, notice that just U ′ = {(−2, 1), (0, 3), (1, 4)} is enough to cover A. Both U and U ′ are open
covers since they consist of open sets whose unions contains A. Notice that U ′ is a finite cover
(it contains only 3 sets) whereas U is not a finite cover. Since every set belonging to U ′ belongs
to U , U ′ is called a subcover of A drawn from U .
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Of course, these covers are not unique. For example, V = {(−∞, n) | n = 0, 1, . . . } is another
open cover of A (actually V is an open cover of the whole real line). If we let V ′ = {(−∞, 4)},
we have that V ′ is a finite subcover of A drawn from V.

Definition 3.2. (Compact Sets). We say a set A ⊆ R is compact if given any open cover
U there exists some natural number n > 0 and U1, . . . , Un ∈ U such that A ⊆ (U1 ∪ · · · ∪ Un).
More succinctly, A is compact if every open cover of A contains a finite subcover of A.

Let us reframe this definition and try to get an intuitive understanding of what compactness
really is. Remember that if an open set grabs a point, then it must grab all of the points close
by as well. Think of open sets grabbing points in clumps. If we cover a set with a collection
of open sets, we can think of each open set grabbing clumps of points. If a set is compact, no
matter how we grab out clumps of points, we should only need finitely many clumps before the
set is all accounted for. In other words, with regards to the action of clumping points together,
compact sets are essentially finite sets. A helpful heuristic can be: it is often the case that if
something is true about finite sets, it will also be true about compact sets. Just as it is helpful to
think of an open interval when someone mentions an open set, it is helpful to think of a finite
set when one mentions a compact set.

With this heuristic in mind, the Extreme Value Theorem seems quite plausible. Recall that
the Extreme Value Theorem states that continuous functions restricted to closed intervals must
achieve a minimum and maximum value. If we accept that closed intervals are compact sets and
then mentally replace “closed interval” with “finite set”, the theorem now states that a function
restricted to a finite set must achieve a minimum and maximum value. Of course, this statement
is quite obvious. If we substitute a finite list of numbers into a function, we get a finite list of
outputs. Some value in that list of outputs must be greatest and some value must be least.

Consider the following sets I = [−1, 5) and J = [−1, 5]. It turns out that I is not compact,
but J is. The only difference between these sets is that J contains its right endpoint, x = 5,
while I does not. Lacking an end point ruins our chances of being compact.

To see that I = [−1, 5) is not compact consider the open cover U = {
(
−2, 5− 1

n

)
| n =

1, 2, 3, . . . } = {(−2, 4), (−2, 41
2), (−2, 42

3), (−2, 43
4) . . . }. Since as n → ∞ we have

(
5− 1

n

)
→ 5,

these open intervals eventually cover up the whole set I. But if we try to cover I with any finite
subcollection of U we will miss the right tail end of I. So since this open cover U of I has no
finite subcover, I is not compact.

I = [−1, 5)

Figure 1: The half-closed interval I = [−1, 5) is not compact.

Eventually we will prove that all closed, bounded intervals (i.e., closed intervals of finite
length) are compact. This result is known as the Heine-Borel Theorem. For the moment,
accepting that J = [−1, 5] is compact, let us see how including x = 5 in an open cover of J
changes the picture. Notice that if we tried to cover J in the same way we covered I, we would
miss x = 5. On the other hand, as soon as we include an open set covering x = 5, we will grab
not only x = 5 but also the right tail end of J . This keeps us from having the same problem
that we had with I.

3



J = [−1, 5]

Figure 2: The closed interval J = [−1, 5] is compact.

Before moving on, we should make sure we are clear about what the definition of compactness
is actually saying. Compactness is not the same as saying we can find some finite open cover of
our set or that there is some open cover that has a finite subcover. If this is what the definition
said, everything would be compact. For example, notice that U = {R} is an open cover of every
subset of R. Looking at I = [−1, 5), we can cover it with finitely many open sets; U = {(−2, 6)}
is an open cover of I. The definition says that a set is compact if every open cover has a finite
subcover. So to show a set is not compact, we merely have to exhibit an open cover which has
no finite subcover. Whereas, showing a set is compact means showing every open cover has a
finite subcover; this is usually more difficult.

We stated earlier that compact sets can be thought to behave like finite sets. Let us prove
that finite sets are indeed compact. Let A = {a1, . . . , an} be a finite set. Next, let U be an open
cover of A. Then since U covers A, given ai ∈ A (1 ≤ i ≤ n) we must have some Ui ∈ U such
that ai ∈ Ui. Since each element of A belongs to some Ui (1 ≤ i ≤ n), we have that {U1, . . . , Un}
is a finite cover of A. Considering an arbitrary open cover, we have shown that it must have a
finite subcover. This means A is compact.

While closed intervals of finite length make great examples of compact sets, there are other
kinds of compact sets in R as well. For an example of an infinite set that is not an interval,
consider the set B = {1/n | n = 1, 2, 3, . . . } ∪ {0}. We will show that B is compact. Let U be
an open cover of B. Then 0 is covered by some open set in U , say 0 ∈ U0. But since U0 is open,
it must contain some open interval (a, b) ⊆ U0 with a < 0 < b. Notice that since b is a positive
number, we can pick some natural number N such that 1

N < b (the fractions 1
N can be made

arbitrarily close to 0). This implies that 1
n ∈ (a, b) ⊆ U0 for all n ≥ N .

In other words, U0 covers 0 and “most” of the sequence of fractions. We just need to cover
1, 12 ,

1
3 , . . . ,

1
N−1 . Since U covers all of B, pick some Uj ∈ U such that 1

j ∈ Uj . Then we have

that U1, . . . , UN−1 cover 1, 12 , . . . ,
1

N−1 . Putting this all together, {U0, U1, . . . , UN−1} covers the
entire set B. Again, given an arbitrary open cover U of B, we have found a finite subcover.
This means B is compact. Intuitively, notice that if we grab a clump of points around 0, only
finitely many points of B will be left, so under the action of clumping, B is more-or-less like a
finite set.

0 1/2 1

Figure 3: An open set grabbing 0 will only miss finitely many elements in B.

Let us prove a basic fact about compact sets and continuous maps. It is obvious that if we
take a finite set of points and with a function map them to a set of respective images, we will
still have a finite set of points. Given our heuristic that compact sets behave like finite sets, the
following theorem should not be too surprising:
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Theorem 3.3. (Continuous Images of Compact Sets). Let A ⊆ R be compact and f :
R→ R be continuous. Then f(A) is compact. This can be more intuitively stated as, the image
of a compact set under a continuous map is compact.

Proof: Assume that A is compact. To show that f(A) = {f(a) | a ∈ A} is compact we need
to show that any open cover of f(A) has a finite subcover.

Let U be an open cover of f(A). Then U ′ = {f−1(U) | U ∈ U} is a collection of open
sets in the domain of f , since U ∈ U being open implies that f−1(U) is also open because f is
continuous.

Now let a ∈ A. Then f(a) ∈ f(A) and so there exists some U ∈ U such that f(a) ∈ U
(because U covers f(A)). By definition a ∈ f−1(U) because f(a) ∈ U . Thus every point in A is
covered by some set in U ′. Therefore, U ′ is an open cover of A.

Next, since A is compact and U ′ is an open cover of A, there must exist a finite subcover:
f−1(U1), . . . , f

−1(Un) (where U1, . . . , Un ∈ U) for A.
Notice that A ⊆ f−1(U1) ∪ · · · ∪ f−1(Un) implies f(A) ⊆ f(f−1(U1) ∪ · · · ∪ f−1(Un)) =

f(f−1(U1 ∪ · · · ∪ Un)) ⊆ (U1 ∪ · · · ∪ Un). Therefore, U1, . . . , Un is a finite subcover for f(A).
Therefore, every open cover of f(A) has a finite subcover, so f(A) is compact. �

4 Heine-Borel: Characterizing Compacts Sets in R

Before getting to the Extreme Value Theorem, we need to understand what it takes to be a
compact subset of the real numbers. It turns out that there is a rather simple characterization.
Namely, a subset of R is compact if and only if it is both closed and bounded. Needing to define
both of these characteristics, we will begin by first defining and discussing boundedness.

Definition 4.1. (Bounded Sets). Let B ⊆ R. If for some M ∈ R we have that M ≤ b for
all b ∈ B (i.e., there is some real number M such that B ⊆ [M,∞)), then B is bounded below.
Likewise, if for some K ∈ R we have that b ≤ K for all b ∈ B (i.e., there is some real number
K such that B ⊆ (−∞,K]), then B is bounded above. If B is both bounded below and above,
we say B is bounded.

For example, B1 = (−4, 20] is bounded. It is bounded below by M = −4 and above by
K = 20. Additionally, B2 = [−5, 7], B3 = (−10, 17), and B4 = [−3, 2) are bounded intervals.
On the other hand, I = [−1,∞) is bounded below but not above, so I is not a bounded interval.
The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . } is unbounded both above and below.

Lemma 4.2. (Compact Sets are Bounded). Let C ⊆ R be a compact set. Then C is
bounded. In other words, compact sets in R are bounded.

Proof: Suppose that C is compact. Notice that U = {(−n, n) | n = 1, 2, 3, . . . }
= {(−1, 1), (−2, 2), (−3, 3), . . . } is an open cover of C. In fact, U covers the whole real line.

But C is compact, so U must have a finite subcover, say (−n1, n1), . . . , (−nj , nj). Let K be
the maximum number in the list n1, . . . , nj . Then (−ni, ni) ⊆ (−K,K) for each i = 1, 2, . . . , j.
This implies that C ⊆ (−n1, n1) ∪ · · · ∪ (−nj , nj) ⊆ (−K,K). Thus C is bounded. �

The reader is invited to consider which interval drawn from U = {(−1, 1), (−2, 2), (−3, 3), . . . }
could be used as in the proof of the lemma to find bounds for previously mentioned compact
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sets such as J = [−1, 5] (see Figure 2). The above lemma reveals that I = [−1,∞) and Z must
not be compact sets since both are unbounded.

We note that the notion of boundedness is not a topological concept. Two topological spaces
that are indistinguishable in the eyes of topology are said to be homeomorphic. While we will
not precisely define the term “homeomorphic”, it is not hard to show that (0,∞) and (0, 1)
are homeomorphic spaces. As far as topology is concerned, these two spaces are the “same”.
Notice that the first interval is unbounded while the second one is bounded. This means that
topology cannot detect boundedness, or that the property of boundedness may not be labeled
as a “topological property”. Readers are invited to investigate the notion of homeomorphism as
an extension to this paper (Munkres, 2000).

Moving onto the next needed characteristic, closed, this concept can be categorized as topo-
logical:

Definition 4.3. (Closed Sets). Let C ⊆ R. We say C is closed if (R−C) = {x ∈ R | x 6∈ C}
is open. Closed sets are precisely the complements of open sets.

Notice that closed sets have properties complementary to the properties of open sets: R =
(R − ∅) and ∅ = (R − R) are both closed, finite unions of closed sets are closed, and arbitrary
intersections of closed sets are closed.

The sets [−3,∞), {1, 2, 3}∪ [10, 20], and [−12, 3] are all examples of closed sets (notice their
complements are unions of open intervals). As a quick note, while R and ∅ are simultaneously
both open and closed, they are the only subsets of R for which this is the case under the standard
topology.

Lemma 4.4. (Compact Sets are Closed). Let C ⊆ R be a compact set. Then C is closed.
Hence, compact sets in R are closed.

Proof: Suppose that C is compact. We wish to show that C is also closed or, equivalently,
(R− C) is open.

Let b ∈ (R−C). Consider (−∞, x) ∪ (y,∞) where x < b < y. For each x, y with x < b < y,
we get an open set surrounding b that does not contain b. If we take the union of all such sets,
we will get (−∞, b) ∪ (b,∞) = (R − {b}) (the whole real line except b itself). This means that
U = {(−∞, x)∪ (y,∞) | x < b < y} is an open cover of (R−{b}) and because b 6∈ C, this is also
an open cover of C.

Now, C is compact, therefore there exists a finite subcover: (−∞, x1)∪(y1,∞), . . . , (−∞, xn)∪
(yn,∞) from U that covers C. Let x∗ = max{x1, . . . , xn} and y∗ = min{y1, . . . , yn}. Then since
xi < b < yi for each i = 1, 2, . . . , n, we have x∗ < b < y∗. Also, because these intervals cover
C, we have C ⊆

(
(−∞, x1) ∪ (y1,∞) ∪ · · · ∪ (−∞, xn) ∪ (yn,∞)

)
=

(
(−∞, x∗) ∪ (y∗,∞)

)
. This

implies that (x∗, y∗) ⊆ (R− C). Hence we have shown that there is an open interval contained
in (R−C) which surrounds b. Since b was arbitrarily chosen, every element of (R−C) belongs
to an open interval contained in this set, so that (R − C) is the union of open intervals. This
means (R− C) is open. Hence C is closed. �

To get our characterization of compact sets, we need to recall a defining property of the
real line. Recall from (Cook, et al., 2016), that the Least Upper Bound Axiom says that if
a nonempty set A ⊆ R is bounded above, then A has a least upper bound, denoted lub(A).
Likewise, R has a logically equivalent Greatest Lower Bound Axiom which says if a nonempty
set A ⊆ R is bounded below, then A has a greatest lower bound, denoted glb(A).
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For example, A = { 1n | n = 1, 2, 3, . . . } = {. . . , 13 ,
1
2 , 1} is a bounded set. In fact, lub(A) = 1

and glb(A) = 0. It is interesting to note that even when the greatest lower bound and least
upper bound exist, they do not have to belong to the set. In our example, while A’s least upper
bound belongs to A: 1 ∈ A, its greatest lower bound does not: 0 6∈ A.

We need the following lemma.

Lemma 4.5. (Closed, Bounded Sets Contain Extremes). Let A ⊆ R where A is nonempty.
If A is closed and bounded below, then glb(A) exists and glb(A) ∈ A. Likewise, if A is closed
and bounded above, then lub(A) exists and lub(A) ∈ A. Briefly, for any closed set, if a greatest
lower bound or least upper bound exists, it must belong to that set.

Proof: Suppose that A is closed and bounded below. Then by the Greatest Lower Bound
Axiom, b = glb(A) exists. For sake of contradiction, suppose that b 6∈ A.

We have assumed that A is closed, so by definition its complement Ac = (R − A) is open.
Since we have assumed b 6∈ A, b belongs to the open set Ac. This implies there is an open
interval containing b which is itself contained in Ac. Specifically, there exists some (a, c) ⊆ Ac

where a < b < c.
Consider x ∈ A, then b ≤ x because b is a lower bound for A. It is impossible to have x < c

because this would imply that a < b ≤ x < c which means x ∈ (a, c) and so x ∈ Ac (which
contradicts the fact that x ∈ A). Therefore, we must have c ≤ x.

We have just shown that c ≤ x for any and all x ∈ A. Therefore, c is a lower bound for A.
But also b < c. Therefore, b is not the greatest lower bound. This contradicts the definition of
b. Therefore, we are forced to conclude that b ∈ A.

A very similar proof establishes the analogous result for least upper bounds. �

Now we are ready to state our theorem about the compact subsets of R. This result is known
as the Heine-Borel Theorem.

Theorem 4.6. (Heine-Borel). Let A ⊆ R. A is compact if and only if A is closed and
bounded.

Before heading into the proof of the Heine-Borel theorem, let us consider a few examples.
The interval A1 = (−1, 2] is bounded, but it is not closed and so by the Heine-Borel theorem A1

is not compact. The interval A2 = (−∞, 5] is closed because its complement (R−A2) = (5,∞)
is open, but A2 is not bounded, so A2 is not compact. On the other hand, sets like A3 = [−2, 9]
and A4 = [−1, 0]∪{1, 2, 3}∪[8, 99] are both closed and bounded, so both A3 and A4 are compact.

As a note to the reader, the following proof is more technical than the other proofs in this
paper. We include this proof for completeness, but it can be safely skipped without damaging
the reader’s understanding of compactness. We recommend skimming this proof during a first
reading.

Proof: We have already proven the easier direction of this theorem. Lemmas 4.4 and 4.2 tell
us that if A is compact, then it must be both closed and bounded. The other direction of this
proof gets a bit more technical.

Note, if A is empty, then A is compact (A = ∅ is certainly finite and thus compact). We will
now assume that A is non-empty.

Suppose A is closed and bounded. Let U be an open cover of A. Since A is bounded, the
Greatest Lower Bound and Least Upper Bound Axioms guarantee that both m = glb(A) and
M = lub(A) exist. Also, A is closed, so by Lemma 4.5 m,M ∈ A.
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Our goal is to show that U has a finite subcover for A. To this end, consider the set
B = {b ∈ R | m ≤ b and ([m, b]∩A) is finitely covered by U}. Before moving on, let us consider
exactly what the set B is. Given any b ≥ m, ([m, b]∩A) is the part of the set A which lies at or
below b on the real number line. Moreover, if b ∈ B, there exists finitely many sets in U whose
union contains ([m, b] ∩ A). More-or-less, B is keeping track of how much of A can be finitely
covered by U .

Clearly, m ∈ B since ([m,m] ∩ A) = {m} is finitely covered by any single set in U that
contains m. Thus B is non-empty.

If this theorem is true, all of A can be finitely covered by U , so all b ≥ M belong to B (for
such b’s we have ([m, b]∩A) = A). In other words, B should be a set that is not bounded above.
So for sake of contradiction, we assume that t = lub(B) exists (i.e., that B is bounded above).

Case 1: This least upper bound of B is either in A or it is not, so first suppose t ∈ A. Then
there exists some V ∈ U such that t ∈ V . But V is open so there exists some open interval
(p, q) ⊆ V such that p < t < q.

Now t is the least upper bound for B. If there is no element in B between p and t, everything
between p and t would be an upper bound for B contradicting t being the least upper bound.
Therefore, we can choose some s ∈ B such that p < s < t. But s ∈ B implies that ([m, s] ∩ A)
can be finitely covered by some U1, . . . , UN ∈ U . Adding V to this collection (i.e., U1, . . . , UN , V )
produces a finite subcover of ([m, r] ∩ A) for any r with t < r < q. Therefore, r ∈ B for all
t < r < q which contradicts t being an upper bound. Thus t cannot belong to A.

Case 2: Suppose t 6∈ A. Then since A is closed, (R−A) is open and so we can find an open
interval (p, q) ⊆ (R − A) such that p < t < q. Recall that t is the least upper bound for B. If
there is no element in B between p and t, everything between p and t would be an upper bound
for B contradicting t being the least upper bound. Therefore, we can choose some s ∈ B such
that p < s < t.

But again, s ∈ B implies ([m, s]∩A) can be finitely covered by some U1, . . . , UN ∈ U . Further,
(p, q) ⊆ (R−A), so ([m, s] ∩A) = ([m, r] ∩A) for any p < r < q. Notice A doesn’t contain any
points in (p, q) so changing r from s within this interval has no effect on the intersection. Thus
we have that U1, . . . , UN also covers ([m, r] ∩ A) for all s < r < q. In particular, each r where
t < r < q belongs to B since ([m, r] ∩ A) can be finitely covered by U1, . . . , UN . Thus t is not
an upper bound for B (contradiction).

Both t ∈ A and t 6∈ A led to contradictions. This means t cannot exist. In other words, B
cannot have a least upper bound. This means B is not bounded above.

Finally, consider M = lub(A). Since B is not bounded above, there is some s ∈ B such that
s > M . Thus A = ([m,M ]∩A) = ([m, s]∩A) is finitely covered by U . Therefore, A is compact. �

Corollary 4.7. (Closed, Bounded Intervals are Compact). Consider a, b ∈ R such that
a ≤ b. Closed, bounded intervals I = [a, b] are compact.

Proof: Notice that (R− I) = (−∞, a) ∪ (b,∞) so (R− I) is a union of open intervals making
it an open set. Therefore, I is closed. It makes sense that a closed interval should be a closed
set. Also, I is bounded by a and b. Therefore, by Theorem 4.6 (the Heine-Borel theorem), I is
compact. �

We can combine the Heine-Borel theorem characterizing compact subsets of R with our the-
orem in the previous paper (Cook, et al., 2016) characterizing connected subsets of R. Theorem
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4.6 (the Heine-Borel theorem) states that I is compact if and only if I is closed and bounded.
Theorem 4 (Intervals are Connected) in (Cook, et al., 2016) states that I is connected if and
only if I is an interval. Thus I is compact and connected if and only if I is closed, bounded,
and an interval.

Corollary 4.8. (Compact, Connected Subsets of R). Let I ⊂ R. The set I is compact
and connected if and only if I = [a, b] for some a, b ∈ R with a ≤ b. In words, the only compact
and connected subsets of the real numbers are the closed intervals of finite length.

compact ⇐⇒ closed and bounded
+ +

connected ⇐⇒ interval
‖ ‖

compact and connected ⇐⇒ closed, finite length interval

5 The Extreme Value Theorem

We can now synthesize our results into the culminating idea, the original purpose of this paper.

Theorem 5.1. (Extreme Value Theorem). Let f : R→ R be a continuous function. Given
a ≤ b, there exist m,M ∈ [a, b] such that f(m) ≤ f(x) ≤ f(M) for all a ≤ x ≤ b.

Proof: The closed, bounded interval I = [a, b] is compact by Corollary 4.7. Theorem 3.3
states that compact sets map to compact sets under continuous functions. Therefore, we have
f(I) is compact. Theorem 4.6 then tells us that f(I) is closed and bounded. In particular, by
Lemma 4.5, glb(f(I)) ∈ f(I) and lub(f(I)) ∈ f(I).

This means that glb(f(I)) = f(m) and lub(f(I)) = f(M) for some m,M ∈ I. Which then by
the definition of greatest lower bound and least upper bound implies that f(m) ≤ f(x) ≤ f(M)
for all x ∈ I. �

In our statement of the theorem, we have introduced the assumption that f is continuous
on the whole real line. This allows us to avoid defining continuity on subspaces of R which
would make this paper unnecessarily cumbersome. This “weakening” of the theorem can easily
be remedied by taking f defined on a closed interval [a, b] and extending it to a function defined
on all R as follows: f(x) = f(a) for x < a, f(x) = f(x) for a ≤ x ≤ b, and f(x) = f(b) for
x > b. This extends a continuous function defined on [a, b] to a continuous function defined on
all R (then all of our results can be applied).

We conclude with a final improved version of the Extreme Value Theorem that invokes results
from our previous paper (Cook, et al., 2016).

Theorem 5.2. (Extreme Value Theorem 2). Let f : R → R be a continuous function.
Given a ≤ b, there exist c ≤ d such that f([a, b]) = [c, d].

Proof: By Corollary 4.8 [a, b] is both compact and connected. Theorem 3.3 along with The-
orem 3 (Continuity Preserves Connectedness) in (Cook, et al., 2016) then tells us that f([a, b])
is both compact and connected. Applying Corollary 4.8 then gives us that f([a, b]) = [c, d] for
some c, d ∈ R with c ≤ d. �
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Figure 4: Continuous functions send closed intervals to closed intervals: f([a, b]) = [c, d].

In summary, this current paper along with its predecessor (Cook, et al., 2016) have provided
topological examinations of two theorems (i.e., the Intermediate and Extreme Value Theorems)
commonly seen as early as precalculus. While many students find such theorems to be in-
tuitively obvious, we now hope the reader better appreciates the role topology plays in the
establishment of these theorems. For further exploration of the fascinating subject of topology,
may we recommend James Munkres’ excellent text (Munkres, 2000).
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