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Abstract

Topological concepts are foundational and provide structural support for ideas commonly
investigated in high school mathematics, particularly continuity and the Intermediate Value
Theorem. Herein, we endeavor to introduce topological concepts to calculus teachers or to
highly motivated students of calculus, and connect these concepts to the standard definition
of continuity. We then introduce connectedness and prove the Intermediate Value Theorem.
It is hoped that a topologically motivated proof will provide greater insight than the more
commonplace epsilon-delta proofs associated with the Intermediate Value Theorem.

1 Introduction

Although high school students have typically never heard of the mathematical field of topology
and very few undergraduate mathematics majors have experienced more than its most brief
introduction, these students regularly investigate concepts born from topology. In fact, so broad
and far reaching is the field of topology that its fundamental notions inherently reside in, and
intersect with, almost all other mathematical fields. Unfortunately, due to its abstract nature,
topology as a whole has historically been deemed most appropriate for graduate mathematics
students. However, seminal notions within topology are readily within the grasp of instruc-
tors who teach calculus and motivated calculus students, and these topics aid in explaining
introductory calculus concepts.

Despite topology being ubiquitous through its mathematical connections, it can be difficult
to succinctly define. From its root words, we could say that topology is the study of spaces.
However, absent from this overly terse definition is that within this field of study lies the devel-
opment of unique characteristics of spaces that can only be labeled as topological, as opposed
to geometric or algebraic. This ideational extension provides a powerful definition that, rather
than moving us in the direction of any one of the many branches within mathematics, moves us
to be able to intersect with all of mathematics.

Now we begin to examine a few topics in high school mathematics and first semester cal-
culus from a topological perspective. We begin by investigating the definition of continuity
and then apply this to the Intermediate Value Theorem, implicitly used in precalculus and for-
mally introduced in a first differential calculus course preceding derivatives. Notably, embedded
within more common epsilon-delta proofs of the Intermediate Value Theorem are the topological
constructs that will be presented herein.
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Theorem 1.1 (Intermediate Value Theorem). Suppose f is continuous on a closed interval
[a, b]. If y is any number between f(a) and f(b), then there is at least one number x in [a, b]
such that f(x) = y.

Immediately following the presentation of this theorem, most textbooks provide a comment
such as:

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus. (Stewart, 2015)

A textbook might also hint at why the proof is not included within, such as

Although this theorem is intuitively obvious, its proof depends on a mathematically
precise development of the real number system, which is beyond the scope of this text.
(Anton, et al., 2012)

Taalmon and Kohn proffer the following of both the Intermediate and Extreme Value The-
orems:

These two important consequences of continuity may seem obvious, but in fact they
rely on a subtle mathematical property of the real numbers called the Least Upper
Bound Axiom. Properly explaining the proofs of these theorems is outside the scope
of this book. (Taalman, et al., 2013)

These comments provide hints pointing to the characteristics of the domain of the function,
f , in the Intermediate Value Theorem; in calculus, the domain of a function is commonly
assumed to be a subset of the real numbers, R. Such a set inherits structure from the topological
space’ of real numbers, so the domain of f is more than a mere set; it can be viewed as a
topological space. Intervals of real numbers possess a powerful topological property known
as connectedness. Continuity is a fundamental notion of topology. In the Intermediate Value
Theorem, the requirement of the domain to be an interval, the continuity of f , and the range
lying inside the set of real numbers all link this theorem to the topic of topology.

The preceding paragraph is rife with nomenclature that may be new to many calculus stu-
dents. Therefore, in the following discussions we will define and apply terms such as continuity,
open and closed intervals, least upper bound, and connectedness. To accomplish this, we begin
with a discussion of continuity moving from a standard epsilon-delta presentation to a topological
perspective.

2 Continuity

In its generality, topology is quite powerful; but generality can unnecessarily obscure the sim-
plicity of the concepts involved. In this paper, discussion is constrained to a single topological
space: the real numbers, R.

The following common definition of a continuous function appears in most calculus textbooks.

Definition 2.1 (Continuity). A function f : R→ R is continuous if for every a ∈ R and for
every ε > 0 there exists some δ > 0 such that |x − a| < δ implies that |f(x) − f(a)| < ε. See
Figure 1 for an illustration of this definition.
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This rigorous definition, first penned by Karl Weirstrass in 1872, was long overdue. Al-
most fifty years prior, Augustin-Louis Cauchy’s 1821 treaty Cours d’ analyze de l’ Ecole Royale
Polytechnique put in words the closeness expressed in Weirstrass’s definition with phrases such
as “indefinitely approach to a fixed value. . . differing from it by as little we wish” (Bradley &
Sandifer, 2009). Cauchy’s work is heralded as the first treatment of calculus with analytic proofs
that did not rely on geometric notions. Before Cauchy, mathematicians relied on ideas similar
to the ubiquitous can be drawn without picking up your pencil notion of continuity that works
for most examples but is not always true.

While we could focus on continuity at a single point (by picking some fixed real number
a ∈ R), for simplicity we will simply assume that our function is continuous everywhere. This
avoids discussions about subspace topologies and neighborhood bases that would unnecessarily
clutter and complicate this current investigation.

f(a)− ε
f(a)

f(a) + ε

a− δ a a+ δ

y = f(x)

x

y

Figure 1. Epsilon-Delta Continuity at x = a.

Now let us focus on the inequalities at the end of this definition of continuity. We note that
|x − a| < δ is the same as a − δ < x < a + δ, which again is the same as x ∈ (a − δ, a + δ).
Likewise, |f(x) − f(a)| < ε can be replaced with f(x) ∈ (f(a) − ε, f(a) + ε). Essentially, our
definition says that given an open interval (p, q) containing f(a), we can find an open interval
(c, d) such that x ∈ (c, d) implies f(x) ∈ (p, q). So, continuity can be recognized as simply a
statement regarding open intervals. While open intervals are a special kind of set and could be
used to accomplish our task, it is more convenient to work with the notion of an open set, a
concept that will be foundational to our following discussions.

Definition 2.2 (Open Sets). Let U ⊆ R. We say that U is open if U can be obtained as the
union of some collection of open intervals. Briefly, U is a union of open intervals.

The preceding definition implies that open intervals themselves are open sets, so (−1, 3) is
an open set. Notice (−5,∞) = (−5, 1) ∪ (−5, 2) ∪ (−5, 3) ∪ · · · ; so unbounded (open) intervals
are open sets. Likewise, R itself is open. Since the interval (a, a) equals the empty set, ∅ = {},
we have that the empty set is an open set (note that (a, a) 6= {a}). The following summarizes
some basic properties of open sets:

• ∅ and R are open.

• Intersecting finitely many open sets yields an open set.
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• The union of (any) collection of open sets yields an open set.

We must be careful not to allow infinite intersections, however. Consider the following
example: (−1, 1)∩(−1/2, 1/2)∩(−1/3, 1/3)∩· · · = {0}. Now {0} is not open, since it cannot be
realized as a union of open intervals. Thus, infinite intersections of open sets are not necessarily
open.

It is worth commenting at this point that any collection of subsets of X (some fixed set)
with the above properties (where R is replaced by X) is called a topology for X. The set X
equipped with some topology is called a topological space.

Now it is time to revisit our definition of continuity. Recall that f : R→ R is continuous if
for each a ∈ R and any open interval (p, q) with f(a) ∈ (p, q), there exists some open interval
(c, d) such that x ∈ (c, d) implies that f(x) ∈ (p, q). This means that any element mapping into
(p, q) must belong to an open interval of elements mapping into (p, q). Therefore, the collection
of elements which map into (p, q) must be a union of open intervals–that is, an open set! We
can generalize a little bit and notice that any union of intervals like (p, q) must be mapped to
by a union of open sets. Notice that we have supplanted the more commonplace epsilon-delta
definition of continuity with the consideration of open intervals. We have now motivated the
following definition:

Definition 2.3 (Topological Continuity). A function f : R → R is continuous if for every
open set V ⊆ R, we have that f−1(V ) = {x ∈ R | f(x) ∈ V } is open. Briefly, f is continuous if
the inverse image of any open set, is itself open (see Figure 2).

p

q

c1 d1 c2 d2 c3 d3

y = f(x)

x

y

Figure 2. Topological Continuity: f−1(p, q) = (c1, d1) ∪ (c2, d2) ∪ (c3, d3).

From our discussion, hopefully it is clear that our new definition is really just the old one in
disguise (i.e., they are equivalent). To demonstrate the difference between a classical analytical
proof and a topological proof, consider the following theorem.

Theorem 2.4 (Continuous Composition). Let f : R → R and g : R → R be continuous
functions. Then g ◦ f : R → R is continuous. Briefly, the composition of two continuous
functions, is itself continuous.

This motivates our first topological proof. However, in order to recognize the aesthetic value
of a topological proof, we compare it with a more frequently seen analytic proof of continuous
composition. We offer the analytic proof first.

Analytic Proof. Let a ∈ R. Suppose ε > 0. Then g is continuous at y = f(a), so
there exists some γ > 0 such that |y − f(a)| < γ implies that |g(y) − g(f(a))| < ε. Next,

4



since f is continuous at x = a, there exists some δ > 0 such that |x − a| < δ implies that
|f(x) − f(a)| < γ. Therefore, |x − a| < δ implies that |f(x) − f(a)| < γ which in turn implies
that |g(f(x))− g(f(a))| < ε. This means g ◦ f is continuous at x = a for all a ∈ R. �

Topological Proof. Let V ⊆ R be an open set. Then U = g−1(V ) is open since g is
continuous. We have that f−1(U) is open since f is continuous. Therefore, (g ◦ f)−1(V ) =
f−1(g−1(V )) = f−1(U) is open for every open set V . This means that g ◦ f is continuous. �

So, what have we accomplished? First, we can clearly see that the topological proof is more
succinct than the analytical proof. This is, in and of itself, quite elegant. However, we can also
begin to notice that topological notions are secreted in the analytical proof. While the analytical
proof employs epsilons and deltas, we have recognized that this is synonymous with intervals.
Thus, not only can we start to see the potential for topology to simplify proofs and clarify ideas,
we see that topology is inherently embedded in some of these ideas. To investigate this further,
let us consider the idea of connectedness.

3 Connectedness

The Intermediate Value Theorem not only involves the concept of continuity as previously
discussed but also connectedness. If asked what is meant by connected, one might intuitively
answer it has one piece. While this may informally capture some of the idea, topology provides
us a mechanism through which to clarify this notion.

Definition 3.1 (Separated and Connected Sets). Let A ⊆ R. A pair of open sets U, V ⊆ R
is called a separation of A if

(a) U ∩A 6= ∅ and V ∩A 6= ∅ (i.e., U and V both contain some points in A);

(b) A ⊆ U ∪ V (i.e., U and V together cover all of A); and

(c) U ∩ V = ∅ (i.e., U and V are disjoint).

If A has a separation, it can be separated. If A can be separated, it is not connected. If A
cannot be separated (i.e., no separation exists), then A is connected (see Figure 3).

[−5.5,−3] [0, 2) (3, 5.25){−2} {−0.5} {6.25}

U
V

A

Figure 3. The set A is separated by open sets U and V .

In Figure 3, A = [−5.5,−3] ∪ {−2} ∪ {−0.5} ∪ [0, 2) ∪ (3, 5.25) ∪ {6.25} is a subset of the
set of real numbers, R. Note that A can be separated by the open sets U = (−∞,−1.5) and
V = (−1,∞), so A is not a connected set. On the other hand, the sets [−5.5,−3], {−2}, {−0.5},
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[0, 2), (3, 5.25), and {6.25} are all examples of connected sets. It turns out that all subsets can
be disassembled into such connected components. If one takes the time to formalize this, we get
that a set is connected if and only if it has a single connected component.

Consider another example, the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } form a disconnected
subset of the real numbers. In particular, we can separate Z using open sets such as (−∞, 1/2)
and (1/2,∞). Similarly the rational numbers Q = {a/b | a, b ∈ Z and b 6= 0} are another
disconnected subset of the reals. Here, we can separate with open sets such as (−∞,

√
2) and

(
√

2,∞).
Intervals are connected. For example, [−1, 2], (3,∞), the empty set, and R itself are con-

nected. Notice that we can separate an interval such as [−1, 2] with intervals: [−1, 2] ⊆
(−5, 1) ∪ [1, 5); but we cannot separate [−1, 2] with open intervals. While this might be in-
tuitively obvious (mathematicians for hundreds of years thought so), this fact requires proof
(which we will supply later).

Parenthetically, although we have already covered numerous topological concepts and proofs,
we have endeavored to accomplish this in a manner accessible to students of calculus who read
attentively and carefully. This again argues that topology, at least at an introductory level, can
be investigated by a far wider audience than those who most commonly encounter topological
ideas.

In the preceding paragraphs, we have defined continuity, proven continuous composition,
and investigated connectedness. With an eye toward developing the necessary fundamental
aspects of the Intermediate Value Theorem, we will now prove an interesting theorem stating
that continuity preserves connectedness. Without this theorem, we could not guarantee that
every intermediate function value could be achieved from the continuous function’s domain.

Theorem 3.2 (Continuity Preserves Connectedness). Let A ⊆ R be a connected set and
f : R→ R be a continuous function. Then f(A) = {f(x) | x ∈ A} is connected.

Proof: Let us assume that f(A) is not connected (and derive a contradiction). Suppose that
U, V is a separation of f(A). Then f−1(U) and f−1(V ) are open sets (since f is continuous).
We now show that f−1(U), f−1(V ) separates A (see Definition 3.1).

3.1(a) Since U ∩ f(A) 6= ∅ there is some a ∈ A such that f(a) ∈ U . Thus a ∈ A ∩ f−1(U) so
A ∩ f−1(U) 6= ∅. Likewise, A ∩ f−1(V ) 6= ∅.

3.1(b) f(A) ⊆ U ∪ V . Thus A ⊆ f−1(f(A)) ⊆ f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).

3.1(c) f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) = f−1(∅) = ∅.

Therefore, f−1(U), f−1(V ) separates A (contradicting our assumption that A is connected).
Thus, no separation of f(A) can exist; so we have that f(A) is connected. �

With these fundamental components in place, there yet remains one more task before we
attack the Intermediate Value Theorem. We need to confirm that intervals are connected and
that every connected subset of R is an interval. Before embarking on the proof of this statement,
we must introduce the concept of a least upper bound (or supremum).

Given a set of real numbers A ⊂ R, we say that r ∈ R is an upper bound of A if x ≤ r for all
x ∈ A. Note that r does not have to belong to the set A. For example, the number r = 5.5 is
clearly an upper bound for open interval A = (−3, 2). We say that r is a least upper bound for a
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set A if r is an upper bound and given any other upper bound s, we have r ≤ s. Quite literally,
r is the least of all of the upper bounds (see Figure 4).

A = (−3, 2)

Upper Bound
r = 5.5

Least Upper Bound
s = 2

Figure 4. The set A = (−3, 2) is bounded above by r = 5.5 with least upper bound s = 2.

One of the most important properties of the real numbers is its Least Upper Bound
Axiom. This property of R gives it much of its topological attributes. The axiom states that
given any non-empty subset A ⊆ R, if A has an upper bound, then A must have a least upper
bound. In the case that a least upper bound exists, we denote it by lub(A).

For example, A = (−3, 2) is bounded above, so its least upper bound must exist. Clearly,
lub(A) = 2. Notice that while A is guaranteed to have a least upper bound, it is not required that
lub(A) is actually a member of A, as is the case with A = (−3, 2). Also, let bn be π truncated
after the nth digit. Consider B = {bn | n = 0, 1, 2, . . . }. This set is bounded above by 4, so the
axiom tell us that the least upper bound for B exists. In fact, lub(B) = π. Furthermore, sets
like (0,∞), Z, and R are not bounded above, so their least upper bounds do not exist. We could
also consider lower bounds and greatest lower bounds (infimums), but upper bounds and least
upper bounds suffice for what follows.

Theorem 3.3 (Intervals are Connected). Let I ⊆ R. I is connected if and only if I is an
interval.

As mentioned above, the empty set is an interval. Also, we allow unbounded intervals and
make no assumptions about end points (so [−2, 5], [−1, 0), (−∞, 3], and {5} = [5, 5] are all
included under the term interval).

Proof: Since the theorem stating that intervals are connected is a biconditional (e.g., if and
only if), it must be proven in both directions. First, we will prove that if I is connected, then
it must be an interval. This direction is quite easy if we do so using the contrapositive.

Suppose that I is not an interval. Then there exists a < b < c such that a, c ∈ I but b 6∈ I.
Consider U = (−∞, b), V = (b,∞). Clearly, a ∈ U and c ∈ V (so U ∩ I 6= ∅ and V ∩ I 6= ∅
meeting Definition 3.1(a)). Equally clear: I ⊆ U ∪ V = (−∞, b) ∪ (b,∞) (meeting Definition
3.1(b)), since b 6∈ I. Finally, U ∩ V = ∅ as well (meeting Definition 3.1(c)). Thus U, V is a
separation of I, so I is not connected.

Briefly, this half of the proof states that in the case that I is not an interval, we can break
I into two pieces using any point I “skips over” as a dividing point. It may be helpful to refer
back to Figure 3.

For the other direction of this proof, suppose that I is an interval. We must work a little
harder in this portion of the proof since it requires the Least Upper Bound axiom along with
the completion of a number of smaller tasks.

Suppose that I is separated by U, V ; we will now derive a contradiction. Since U ∩ I 6= ∅
and V ∩ I 6= ∅ (Definition 3.1(a)), there exists some a ∈ U ∩ I and c ∈ V ∩ I. Without loss of
generality, we can assume a < c. (Note: We cannot have a = c since U and V are disjoint.)
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Consider the set B = {y ∈ R | (a, y) ⊆ U}. The idea here is to see how far we can depart
from a without leaving the open set U . Notice that since a ∈ U and U is open (i.e., a union of
open intervals) there is some interval (p, q) ⊆ U with a ∈ (p, q). Thus, (a, q) ⊂ (p, q) ⊆ U , so
q ∈ B. Therefore, B is non-empty (departing a least slightly from a does not leave U). Next,
B is bounded above by c since, otherwise we would have some d ∈ B such that d > c and so
c ∈ (a, d) ⊆ U . In particular, c ∈ U so that U and V are not disjoint (contradicting Definition
3.1(c)). Briefly, B must be bounded above since c ∈ V ; trying to extend (a, c) would cause us
to leap outside of U . In summary, B is a non-empty set of real numbers bounded above by c.

We now call on the Least Upper Bound axiom: If B is non-empty and bounded above (which
it is), then lub(B) = b exists. Notice that if r lies between a and b, then (a, r) ⊆ U . (If (a, r) 6⊆ U ,
then r would yield a smaller upper bound for B. However, b is the least upper bound for B.)
Therefore, all open intervals (a, r) for a < r < b are contained in U . Since U is an open set, the
union of such open intervals must also be contained in U . The union of all (a, r) for a < r < b
is nothing more than the open interval (a, b). Therefore, (a, b) ⊆ U . This means that b ∈ B (B
contains its least upper bound).

Now b is the least of all upper bounds for B and c is an upper bound, so b ≤ c. Next, since
b is an upper bound for B, a ≤ b. This leads to the question: Where does b belong? Notice that
b lies between a and c, so b ∈ I (since a, c ∈ I and I is an interval–we finally used that I is an
interval!). Recall that I ⊆ U ∪V (Definition 3.1(b)). Therefore, either b ∈ U or b ∈ V . We have
almost reached the end. In the next paragraph, we will find that both b ∈ U and b ∈ V lead to
a contradiction.

First, suppose b ∈ U . Then since U is an open set (a union of open intervals) there exists
some open interval (p, q) containing b which lies inside of U . However, (a, b) ⊆ U (because b ∈ B)
and so (a, q) ⊆ (a, b) ∪ (p, q) ⊆ U . In other words, (a, b) can be extended a bit further and still
stay inside U . This means that q ∈ B and q > b. Thus, b is not an upper bound for B. This
contradicts the definition of b which states b = lub(B). Thus b cannot possibly belong to U .

Therefore, we must have that b ∈ V . However, like U , V is open so there is some open
interval (p, q) containing b which lies inside of V . This means that p < b < q, so the intervals
(a, b) (contained in U) and (p, q) (contained in V ) intersect. This means that U and V overlap:
U ∩ V 6= ∅ (contradicting Definition 3.1(c)). Thus, b cannot belong to V .

With all cases covered, no separation of I can exist (i.e., I is connected). �

We have finally developed all the necessary topological components to investigate the In-
termediate Value Theorem–the goal of this paper. With these pieces in hand, the proof of
this theorem is quite simple, and indeed elegant–arguably far more elegant than more common
epsilon-delta proofs that conceal their topological roots.

Theorem 3.4 (Intermediate Value Theorem). Let f : R→ R be a continuous function and
a < b. Then given any real number y between f(a) and f(b), there exists some a ≤ x ≤ b such
that f(x) = y.

Proof: I = [a, b] is an interval, so it is connected (Theorem 3.3). Therefore, f(I) is connected
(since f is continuous; see Theorem 3.2). This means that f(I) is an interval (Theorem 3.3).
Since f(a), f(b) ∈ f(I) and f(I) is an interval, if y lies between f(a) and f(b), then y ∈ f(I).
Therefore, there exists some x ∈ I = [a, b] such that f(x) = y. �
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The careful reader will recognize that we have altered the hypothesis of the original Interme-
diate Value Theorem (Theorem 1.1). We have introduced the assumption that f is continuous
on the whole real line. This allows us to avoid defining continuity on subspaces of R which would
make this paper unnecessarily cumbersome.

This “weakening” of the theorem can easily be remedied by taking f defined on a closed
interval [a, b] and extending it to a function defined on all R as follows: f(x) = f(a) for x < a,
f(x) = f(x) for a ≤ x ≤ b, and f(x) = f(b) for x > b. This extends a continuous function
defined on [a, b] to a continuous function defined on all R (then Theorem 3.4 applies).

We have achieved our goal: We proved the Intermediate Value Theorem using the sophis-
ticated beauty of topology. We accomplished this in a manner accessible to instructors of
introductory calculus and motivated calculus students who may or may not have had previous
instruction in topology. Thus, in addition to proving this exquisite theorem, we have demon-
strated that some topological concepts are well within reach of a wide audience of calculus
teachers and students. It is hoped that this will develop some intrigue in readers to investigate
topology to a greater extent. May we recommend James Munkres’ excellent text (Munkres,
2000).
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