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Abstract 

Following a line of inquiry regarding the exact number of real roots of a real polynomial, this 

investigation considers: Descartes’ Rule of Signs, the Budan-Fourier Theorem, and versions of 

Sturm’s Method in contrast to the approximate root count gleaned from graphing utilities. Online 

applets are provided to allow the reader to freely experiment with different polynomial examples. 

Additionally, activities at the end of each section facilitate further investigations and deeper 

understanding of the topics. 

 

 Keywords:  Descartes, Real Roots, Polynomials, Sturm 

 

  



 2 

Finding Real Roots of Polynomials Using Sturm Sequences 

 

While technology provides the opportunities for countless wonderful mathematical investigations, 

explications, and applications, technology can also hide – often within its sophisticated coding – 

beautiful, valuable, and powerful historic mathematics. At times, some technological tools (e.g., 

graphing) can minimize other investigations. For instance, when asked to count the real roots a 

particular real polynomial possesses, rather than employing algebraic techniques, a student may 

be more apt to simply use technology to graph the function, count x-intercepts, and account for 

odd and even multiplicities. However, even this technique may provide insufficient detail 

regarding the exact multiplicity of roots: for instance,  and 

 produce essentially the same x-axis behavior on the graph. Furthermore, 

depending on the window and zoom of a graphing technology, two distinct real roots in close 

proximity may be interpreted as a double real root or an extremum only slightly departed from the 

axis may be perceived as intersecting the x-axis. Thus, it can be argued that, in some cases, 

graphing techniques provide powerful, albeit often only approximate results. On the other hand, 

algebraic techniques – some even hundreds of years old – can produce exact results. It is valuable 

to understand the mathematics newly available through the power of technology and dynamic 

multiple representations along with the mathematics of the past.  

 In this paper, we investigate the enumeration of real roots of a real polynomial in the 

historical context preceding graphing technology and demonstrate that techniques still have 

significant value (Baker, 1892; Davies, 1845; Olney, 1885). We believe that providing students 

opportunity to investigate these ideas increases the richness of their mathematical experiences. For 

curious students, results like Descartes’ Rule of Signs provide an accessible yet deep area of study 
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that introduces them to a wonderful historical evolution of theorems regarding real and complex 

root counting associated with real polynomials. To enhance the reader’s interactive experience, 

online applets are provided for the reader to experiment with different notions and polynomials. 

These applets, replicating centuries-old mathematics, are constructed in Sage and no software 

needs to be downloaded or installed for their use.  

 This brief investigation has a number of integrated purposes. First, in the context of the 

central role polynomials have in almost all mathematics, we hope to resurrect beautiful, historical 

mathematical ideas and consider the notion of exact versus approximate mathematical results. 

Second, we wish to present these mathematical ideas in a manner appropriate to as wide an 

audience as possible. We hope that advanced, high school mathematics students, college students, 

and their respective instructors will find this material interesting and engaging. The dynamic online 

applets allow for practice and deeper investigation, opening the topic to a wider audience who 

desire to see examples beyond those presented in the text. Since proofs of these mathematical ideas 

are relatively advanced, we provide references to some proof resources conveniently accessible 

online that are more readable than others. Third, since we hope that these materials can be used 

for deeper student investigations by either motivated students or in a study of the history of 

mathematics, we have added activities at the end of each section to facilitate further investigations 

of the topics. 

The Problem 

Given a polynomial with real coefficients, 𝑝𝑝(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛𝑎𝑎𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎0 , one may 

wonder how many real roots 𝑝𝑝(𝑥𝑥) possesses and exactly where they are located. While it is simple 

to locate the real roots when the polynomial is in factored form, when written in expanded form, 

root finding may be difficult or impossible to do exactly. Therefore, we resurrect a number of old 
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mathematical techniques that can be applied to enumerating the number of real roots and 

determining their values in respect to polynomial.  

Counting Real Roots 

Descartes’ Rule of Signs  

Most mathematics students in grades 10-16 are informally and briefly acquainted with Descartes’ 

Rule of Signs. This technique provides an upper bound on the number of positive real roots 

(counting multiplicities) and an upper bound on the number of negative real roots (counting 

multiplicities) of a polynomial. This interesting theorem is stated: 

Given a real polynomial, 𝑝𝑝(𝑥𝑥), ordered by descending variable exponent, then the 

number of:  

positive roots (counting multiplicity) of 𝑝𝑝(𝑥𝑥) is either equal to the number 

of sign changes between consecutive nonzero coefficients, or is less 

than it by an even number. 

negative roots (counting multiplicity) is the number of sign changes of the 

coefficients of 𝑝𝑝(−𝑥𝑥) or less than it by an even number.  

Finally, it can be noted that zero is a root only when 𝑝𝑝(𝑥𝑥) has no constant term. In 

summary, the number of sign changes provides an upper bound for the number of 

positive and negative real roots respectively. 

Example:  Let  

. 

To find the number of positive roots, we note that there are four changes of sign, denoted 

(+-, --, -+, +-, --, -+, ++): 
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. 

To find the number of negative roots, we note that there are three changes of sign, denoted 

(--, -+, ++, ++, +-, --, -+): 

 . 

Thus, while Descartes’ Rule of Signs allows for the possibility of having four, two, or no positive 

roots and three or one negative root, our polynomial, in fact, has four positive and three negative 

roots (counting multiplicity). 

 The ease of implementation of this Rule comes at the cost of only providing bounds on, 

and not the exact number of, roots. Therefore, there are either four, two, or zero positive real roots 

and either three or one negative real roots (and, in this example, zero is not a root). While this 

enumeration of roots has value, it can be quickly seen that it also has inherent weaknesses in its 

provided choices for the number of roots.  

 Although an example is provided above regarding Descartes’ Rule of Signs, readers may 

wish to experiment with numerous examples to ensure that the process is understood. To do so, 

use the online applet: Descartes' Rule of Signs. (A proof for Descartes’ Rule of Signs can be found 

in Albert (1943).)  

Budan-Fourier Theorem 

Above, Descartes’ Rule of Signs provided upper bounds for the number of positive or negative 

real roots (i.e., the intervals 𝐼𝐼 =  (0,∞) of positive real numbers and (−∞, 0) of negative real 

numbers). However, one may desire to count the number of real roots within other intervals. The 

Budan-Fourier Theorem gives an upper bound on the number of real roots (counting multiplicity) 

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Descartes_rule_of_signs.html
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of a real polynomial in a given interval , where  and/or  are allowed. [Note 

that when , .] The process can be simply stated as:  

• Begin with a (nonzero) real polynomial and compute all of its derivatives. Evaluate this list of 

derivatives at .  

• After ignoring all zeros, count the number of times the list of numbers switches from positive 

to negative numbers or vice-versa.  

• Next, do the same for .  

• The number of sign changes at  minus the number of sign changes at  gives an 

upper bound on the number of real roots of that polynomial (counting multiplicity). In fact, if 

the difference in sign changes is s, then this polynomial has  real roots (counting 

multiplicity) for some positive integer k. For example, if , then there are either one or 

three real roots in our interval. On the other hand, if , then there are either four, two, or 

no real roots in our interval.  

Descartes' Rule of Signs is a special case of the Budan-Fourier Theorem. If , the 

sequence of sign changes in  is the same as the sign changes in the 

coefficients of . If , then all of signs of  are the same. [By 

 we mean the limit of  as x approaches . The value of  is the sign of the 

leading coefficient times infinity if  is non-constant and is  itself if  is constant. On 

the other hand,  is  times the sign of the leading coefficient times infinity if  

is non-constant and just  itself if  is constant.] Thus, Descartes' Rule of Signs counts the 

same thing as Budan-Fourier for  and , that is the roots in  (i.e. the positive 

real roots). 
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Extending Descartes Rule, the Budan-Fouier method can be used to search for the locations 

of roots. By examining Budan-Fouier’s results for different values of a and b, one can often find 

regions where there are no roots and regions where there must be a root. Of course, this method is 

still limited in that it provides a bound for root counts rather than an exact root count. (A proof for 

the Budan-Fourier Theorem can be found in Conkwright (1943).) 

To experiment with numerous examples to ensure that the process is understood, the reader 

may use the online applet: Budan-Fourier Theorem. 

Activity: 

1.  Without using the applet provided, use the Budan-Fourier theorem to count the real 

roots in . 

2.  Use the online applet to confirm your findings. 

3.  Use Descartes Rules of Signs to determine the number of positive and negative real 

roots. (One positive root and two or zero negative roots.) Compare your results with 

that from #1. Explain whether or not the two answers agree. 

4.  Use the online applet to confirm your findings. 

5.  Consider the following to confirm your findings: 

. 

Sturm’s Method 

The previous techniques provided only upper bounds on root counts. This weakness is overcome 

using Sturm sequences, through which an exact number of distinct real roots can be determined. 

(A brief discussion and proof are provided in Fisher (1999, p. 386-387).) Notably, Sturm sequences 

are determinable using only the simple operations of taking the first derivative of a real polynomial 

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Budan-Fourier-theorem.html
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and polynomial division. To best understand Sturm’s Method, we begin with the Euclidean 

Algorithm for determining the greatest common divisor of two natural numbers and the Euclidean 

Algorithm for polynomials. Since Sturm’s Method uses a modification of these Algorithms, 

investigating these Algorithms provides scaffolding for following discussions.  

 Euclidean Algorithm. For millennia, mathematicians have employed the Euclidean 

Algorithm to determine the greatest common divisor of two natural numbers. The Algorithm is 

based on the following simple observation: If 𝑚𝑚 = 𝑛𝑛𝑛𝑛 + 𝑟𝑟, then the common divisors of m and n 

are exactly the same as the common divisors of n and r. Let gcd(𝑚𝑚, 𝑛𝑛) denote the greatest common 

divisor of m and n. This means that gcd(𝑚𝑚, 𝑛𝑛) = gcd(𝑛𝑛, 𝑟𝑟). Each time the division is performed 

and a remainder determined, the old argument can be exchanged for a smaller new one (i.e. swap 

out m for r). Since the remainders continue to diminish, eventually one of them must become 0. 

At this point,  and so the last nonzero remainder is the gcd(𝑚𝑚, 𝑛𝑛). 

 Many online applets use the Euclidean Algorithm in order to calculate the greatest common 

divisor of two inputted values. However, in so doing, the Algorithm becomes hidden. To further 

investigate the Euclidean Algorithm and witness examples worked out, the reader is invited to use 

the applet at Euclidean Algorithm. 

 Euclidean Algorithm for Polynomials. It is often necessary to seek for the greatest 

common divisor of two or more polynomials. Finding the greatest common divisor of two 

polynomials, m(x) and n(x), can be accomplished in the exact same manner as with two natural 

numbers. Again, it the case that, if 𝑚𝑚(𝑥𝑥) is divided by 𝑛𝑛(𝑥𝑥) and thereby 𝑚𝑚(𝑥𝑥) = 𝑛𝑛(𝑥𝑥)𝑞𝑞(𝑥𝑥) +

𝑟𝑟(𝑥𝑥), then the common divisors of 𝑚𝑚(𝑥𝑥) and 𝑛𝑛(𝑥𝑥) are exactly the common divisors of 𝑛𝑛(𝑥𝑥) and 

𝑟𝑟(𝑥𝑥) so that the gcd(𝑚𝑚(𝑥𝑥), 𝑛𝑛(𝑥𝑥)) = gcd(𝑛𝑛(𝑥𝑥), 𝑟𝑟(𝑥𝑥)) . Continuing the process of dividing 

polynomials and each time swapping out one of the polynomials with a remainder, leads to each 

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Euclidean_algorithm.html


 9 

remainder having a lower degree until gcd(𝑚𝑚(𝑥𝑥), 𝑛𝑛(𝑥𝑥)) = ⋯ = gcd(𝑟𝑟(𝑥𝑥), 0) = 𝑟𝑟(𝑥𝑥), where  

is the last non-zero remainder. 

  To explore examples of determining the greatest common divisor of two polynomials, 

consider the online applet at Polynomial Euclidean Algorithm. It may be beneficial to initially 

enter polynomials in factored form in order to best observe the results. 

Activity: 

1.  Let 𝑚𝑚(𝑥𝑥) = 2𝑥𝑥5 + 3𝑥𝑥4 + 5𝑥𝑥2 + 3𝑥𝑥 + 2 and 𝑛𝑛(𝑥𝑥) = 𝑥𝑥4 + 𝑥𝑥3 − 𝑥𝑥2 + 2𝑥𝑥. 

2.  Perform the Euclidean Algorithm for polynomials to determine the gcd(𝑚𝑚(𝑥𝑥), 𝑛𝑛(𝑥𝑥)). 

3.  Use the online applet to confirm your results. 

4.  Descartes’ Rule of Signs reveals that both 𝑚𝑚(𝑥𝑥) and 𝑛𝑛(𝑥𝑥) have at least one real root. In 

fact, it says that 𝑛𝑛(𝑥𝑥) has exactly one real root. Budan-Fourier could, for example, tell 

us that both of these polynomials have a root in the interval  (use  and 

). The Euclidean Algorithm reveals that they SHARE a root at .  

5.  Confirm the findings in #4. 

Returning to Sturm’s Method  

Sturm’s method for counting distinct real roots of a real polynomial restricted to an interval begins 

with the computation of a sequence of polynomials known as a Sturm sequence or Sturm chain. 

• Begin with polynomial 𝑝𝑝0(𝑥𝑥) = 𝑝𝑝(𝑥𝑥) and compute its derivative 𝑝𝑝1(𝑥𝑥) = 𝑝𝑝′(𝑥𝑥).  

• Then determine 𝑝𝑝0(𝑥𝑥) 𝑝𝑝1(𝑥𝑥)⁄ . This yields a polynomial quotient and remainder. 

• Let 𝑝𝑝2(𝑥𝑥) = −�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝0(𝑥𝑥) 𝑝𝑝1(𝑥𝑥)⁄ )�.  

• Now continue dividing 𝑝𝑝𝑖𝑖(𝑥𝑥) by 𝑝𝑝𝑖𝑖+1(𝑥𝑥)and setting 𝑝𝑝𝑖𝑖+1 equal to the negative remainder until 

a zero remainder is achieved. This will inevitably occur since each division yields a negative 

remainder of lower degree.  

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Euclidean_algorithm-poly.html
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The Sturm sequence, denoted the canonical Sturm chain, can be depicted as: 

 

Computing the canonical Sturm chain is almost the same thing as running the Euclidean 

Algorithm on  and its derivative . The only difference is that at each stage we replace 

a previous polynomial with a negative remainder instead of a remainder. Now constant multiples 

have no effect on the greatest common divisor of polynomials so it still the case that the Sturm 

sequence will compute the greatest common divisor of  and . 

With Sturm’s sequence of polynomials defined, we recognize that an anomaly occurs when 

the initial polynomial has a repeated root at either 𝑥𝑥 = 𝑎𝑎 or 𝑥𝑥 = 𝑏𝑏 on the interval [a, b].  Thus, we 

consider two cases: Case 1, when neither a nor b is a repeated root and Case 2, when either a or b 

is a repeated root.  

Case 1. Let 𝑝𝑝0(𝑥𝑥), 𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥), ⋯ , 𝑝𝑝𝑚𝑚(𝑥𝑥) be the Sturm sequence for 𝑝𝑝(𝑥𝑥) =

𝑝𝑝0(𝑥𝑥). For any real number t or , let  denote the number of sign changes 

in the sequence  [as with Descartes – we ignore zeros.]. 

Then for any two real numbers  (we also allow  and/or ), as 

long as neither a nor b is a repeated root,  is the number of distinct real 

roots lying in the interval  or  if .  

We now consider the second case, when either  or  is a repeated root. 

Evaluating the Sturm sequence of polynomials at a repeated root will yield an unusable string 
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of 0's. But all is not lost, if the process is modified. First, determine the last nonzero term of the 

sequence. Dividing the entire sequence by this term then modifies the canonical Sturm chain and 

eliminates the unwanted string of zeros. This modified Sturm sequence is useable even when we 

evaluate at repeated roots.  

It is an interesting and relatively unfamiliar fact that  is actually the 

product of all of repeated copies of the factors in . This means that  (the last term in 

the Sturm sequence) is just repeated copies of factors of . Then  has all of the 

same roots as  [real and complex] but  has no repeated roots.  

Case 2. If we replace the Sturm sequence 𝑝𝑝0(𝑥𝑥), 𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥), ⋯ , 𝑝𝑝𝑚𝑚(𝑥𝑥) with a 

modified sequence 𝑝𝑝0(𝑥𝑥)
𝑝𝑝𝑚𝑚(𝑥𝑥) , 𝑝𝑝1(𝑥𝑥)

𝑝𝑝𝑚𝑚(𝑥𝑥) , 𝑝𝑝2(𝑥𝑥)
𝑝𝑝𝑚𝑚(𝑥𝑥) ,⋯ , 𝑝𝑝𝑚𝑚(𝑥𝑥)

𝑝𝑝𝑚𝑚(𝑥𝑥) = 1 , then Sturm’s method still 

applies, but now we do not need the caveat about  or b being a repeated root. 

For the modified sequence  always counts the number of distinct real 

roots in . 

The theorem then leads to the process: Evaluate 𝑝𝑝0(𝑥𝑥), 𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥), ⋯ , 𝑝𝑝𝑖𝑖+1(𝑥𝑥) at 

, yielding a list of real numbers. Count the number of sign changes in this list (ignoring zeros) and 

call the number of sign changes A. Then do the same for  and call the number of sign 

changes B. If neither  nor  is a repeated root, the number of distinct roots in the interval 

 is exactly . 

Notably, while the modified Sturm sequence can always be used without exception, if the 

polynomial case does not possess repeated roots at the boundaries of the interval in question, the 

regular, canonical Sturm sequence is easier to compute (avoiding extra polynomial divisions). 
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However, when the interval in question is  since ±∞ are not roots, the original, 

unmodified Sturm sequence always works and counts all distinct real roots.  

Example: Let 𝑝𝑝0(𝑥𝑥) = 𝑝𝑝(𝑥𝑥) = (𝑥𝑥 − 1)2(𝑥𝑥 + 2) = 𝑥𝑥3 − 3𝑥𝑥 + 2. Let us now compute the 

first derivative: 𝑝𝑝1(𝑥𝑥) = 𝑝𝑝′(𝑥𝑥) = 3𝑥𝑥2 − 3 . Next, polynomial division yields 𝑝𝑝(𝑥𝑥) =

𝑝𝑝′(𝑥𝑥) ∙ 13𝑥𝑥 + (−2𝑥𝑥 + 2). Thus, 

𝑝𝑝2(𝑥𝑥) = −𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝0(𝑥𝑥), 𝑝𝑝1(𝑥𝑥)� = −𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝(𝑥𝑥), 𝑝𝑝′(𝑥𝑥)� = −(−2𝑥𝑥 + 2) = 2𝑥𝑥 − 2. 

Finally, 𝑝𝑝1(𝑥𝑥) = 𝑝𝑝2(𝑥𝑥) ∙ �32𝑥𝑥 + 3
2� + 0 so that 𝑝𝑝3 = −𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝1(𝑥𝑥), 𝑝𝑝2(𝑥𝑥)� = 0. Thus, our 

sequence ends with 𝑝𝑝2(𝑥𝑥). 

Let us now evaluate our Sturm sequence at 𝑎𝑎 = 0 and 𝑏𝑏 = 2 (Case 1).  

   𝑝𝑝0(0) = 2        𝑝𝑝1(0) = −3        𝑝𝑝2(0) = −2 

   𝑝𝑝0(2) = 4        𝑝𝑝1(2) = 9           𝑝𝑝2(2) = 2 

Thus, we have one sign change at 𝑎𝑎 = 0 and no sign changes at 𝑏𝑏 = 2, so 𝜎𝜎(𝑎𝑎) = 𝜎𝜎(0) =

1 and 𝜎𝜎(𝑏𝑏) = 𝜎𝜎(2) = 0.  Therefore, 𝑝𝑝(𝑥𝑥) has 𝜎𝜎(𝑎𝑎) − 𝜎𝜎(𝑏𝑏) = 1 − 0 root in 𝐼𝐼 = (0,2]. 

If we wished to apply this method at 𝑎𝑎 = 0 and 𝑏𝑏 = 1 (Case 2), we run into a 

problem: 𝑝𝑝0(1) = 𝑝𝑝1(1) = 𝑝𝑝2(1) = 0. Here we need the modified Sturm sequence, since 

𝑏𝑏 = 1 is a repeated root. Dividing by 𝑝𝑝2(𝑥𝑥) = 2𝑥𝑥 − 2, we get: 

𝑟𝑟0(𝑥𝑥) = 𝑝𝑝0(𝑥𝑥)
𝑝𝑝2(𝑥𝑥) = 1

2𝑥𝑥
2 + 1

2𝑥𝑥 − 1  𝑟𝑟1(𝑥𝑥) = 𝑝𝑝1(𝑥𝑥)
𝑝𝑝2(𝑥𝑥) = 3

2𝑥𝑥 + 3
2 𝑟𝑟2(𝑥𝑥) = 𝑝𝑝2(𝑥𝑥)

𝑝𝑝2(𝑥𝑥) = 1. 

Now, 𝑟𝑟0(0) = −1 , 𝑟𝑟1(0) = 3
2 , and 𝑟𝑟2(0) = 1  (i.e., 𝜎𝜎(𝑎𝑎) = 𝜎𝜎(0) = 1  sign change) and 

𝑟𝑟0(1) = 0, 𝑟𝑟1(1) = 3, and 𝑟𝑟2(1) = 1 (i.e., 𝜎𝜎(𝑏𝑏) = 𝜎𝜎(1) = 0 sign changes).  Therefore, 

there is 𝜎𝜎(𝑎𝑎) − 𝜎𝜎(𝑏𝑏) = 1 − 0 = 1 root in 𝐼𝐼 = (0,1]. 
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An online applet is provided that allows the reader to experiment with any number of 

examples of Sturm’s Method, see these examples worked out, and come to better understand the 

process of using these sequences. This applet can be found at Sturms' Method. 

Activity:  

1.  Let . Confirm that Sturm’s method reveals that  has one real 

root. 

2.  Let . Confirm that Sturm’s method reveals that  has two real 

roots. 

3.  Let . Confirm that Sturm’s method reveals that  has three real 

roots. 

4.  Use the advanced Sturm sequence applet (provided in the following section) to reveal 

what the multiplicities are.  

5.  Let . Sturm’s method tells us that there are three distinct 

real roots and the advanced Sturm’s method tells us one root is repeated). Note that if 

 is graphed on the interval , it looks like there are only two roots! 

Extending Sturm’s Method 

While Sturm’s Method counts the number of distinct real roots of a real polynomial in an interval, 

it cannot determine the multiplicity of each root. Employing an iterative use of Sturm’s Method 

can determine the number of real roots in an interval, the multiplicity of these counted roots, and 

the number of complex roots. In particular, since the  (the last term 

in the Sturm sequence) contains any repeated copies of factors of , one can apply Sturm’s 

Method to  to find the number of distinct real roots in an interval that are repeated at least 

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Sturms_method.html
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twice. Applying Sturm’s Method to the last polynomial in  sequence will find number of 

distinct real roots in an interval that are repeated at least three times. Continuing in this fashion 

eventually reveals all how many distinct real roots in an interval of each multiplicity there must 

be. We refer to this repeated use of Sturm’s original method as the Advanced Sturm’s Method.  If 

we use , we have found ALL real roots counting multiplicity, so any remaining root is 

complex. 

 With additional application and modification of the Advanced Sturm’s Method, 

techniques can be used to determine ranges in which the real roots exist, thereby assisting to 

determine the values and multiplicities of these real roots. To investigate these ideas, readers are 

provided both an online applet and the following activity. (See Advanced Sturm’s Method.)  

Activity:  

1.  Open the Advanced Sturm’s Method applet. Deselect “Show table?” and “Show plot?”.  

2.  For , enter  and press 

“Update”. 

3.  Note that the results are:  

  has 10 real roots counting multiplicity. 

 There is 1 real root of multiplicity 3. 

 There are three real roots of multiplicity 2. 

 There is 1 real root of multiplicity 1. 

  has no complex roots. 

4.  Compare these results with that of Descartes’ Rule of Signs which reports that  

would have five, three, or one positive root and three or one negative roots. Note that 

http://mathsci2.appstate.edu/%7Ecookwj/sage/algebra/Sturms_method-advanced.html
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the results from Sturm and Descartes are consistent, albeit both providing slightly 

different information. This will later be investigated in more detail. 

5.  Select “Show table?” and enter and enter a list of integers ranging from -5 to 5 into 

“Table values”. [This can be entered as [-5,-4,-3,-2,-1,0,1,2,3,4,5] or range(-5,6).] Press 

“Update”. Note that five changes in signs alter to four changes in sign as x goes from -

3 to -2. This indicates that there must be a real root in the interval . Similarly, 

real roots must exist in the intervals , , , and . Additionally, 

no roots exceed . Therefore, all roots are in the interval  Notably, this 

information far surpasses information available via Descartes’ Rule of Signs.  

6.  For confirmation of all results, note that 

 

7.  Repeat the previous activity (parts 1-6) with the polynomial 

  

Note that Descartes’ Rule of Signs would report this polynomial to have six, four, two, or 

zero positive real roots and three or one negative real roots.  

⋮ 

12.  For confirmation of all results, note that 
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Culminating activity: 

Use all of the tools previously mentioned and find the value and multiplicity of all real 

roots of  

and the number of nonreal complex roots. (Note that this is not asking for the number of 

roots, but the actual value and multiplicity of the roots.)  

Summary and Conclusion 

We have seen that the Advanced Sturm's Method can be used to both count the number of real 

roots (and their multiplicities) in an interval and help locate these real roots. This investigation 

provides a beginning for further study. There are numerous intriguing theorems awaiting those 

wishing to delve more deeply into these matters.  For instance, consider the theorem: 

Let  be a real polynomial, m and l real numbers, and m>0 and l<0. Let 

 and . 

If all coefficients of  and  are of the same sign, then  has no 

root greater than m. [0 may be denoted 0 or -0.] If all coefficients of  and  

alternate signs, then  has no root less than l. 

While graphing technologies are wonderful tools, before the existence of graphing technologies, 

beautiful, historical mathematics abounded. Investigating some of theorems can promote even 

greater student inquiry and intrigue. Enjoy!  
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