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Abstract

Every Leibniz algebra has a maximal homomorphic image that is a Lie algebra. In this
paper, we classify cyclic Leibniz algebras over an arbitrary field. Such algebras have the
1-dimensional abelian Lie algebra as their maximal Lie quotient. We then give examples of
Leibniz algebras whose associated maximal Lie quotients exhaust all 2-dimensional possibil-
ities.1

1 Introduction

The theory of Leibniz algebras has blossomed since the pioneering work of Loday [L]. Transition-
ing from Lie to Leibniz algebras is similar to transitioning from commutative to non-commutative
rings. Both transitions drop one defining property, leading to many new and interesting struc-
tures. In a Leibniz algebra we keep a version of the Jacobi identity but no longer assume that
multiplication is alternating and hence not necessarily skew-symmetric either. To truly under-
stand an algebraic structure one needs a varied collection of illuminating examples. In this paper
we seek to provide a small collection of examples of non-Lie (left) Leibniz algebras.

In [SS] the authors provide a classification of cyclic Leibniz algebras over the complex field.
We offer a variant proof which avoids the use of nth-roots and thus provides a complete classi-
fication of cyclic Leibniz algebras over arbitrary fields. In addition, we construct two classes of
non-cyclic Leibniz algebras with non-isomorphic 2-dimensional maximal Lie quotients, exhaust-
ing all possibilities for such quotients.

The paper is structured as follows: after providing some background in Section 2, we use
Section 3 to construct and classify all cyclic Leibniz algebras over an arbitrary field. The next
two sections present examples of Leibniz algebras with both non-abelian (Section 4) and abelian
(Section 5) 2-dimensional maximal Lie quotients.

2 Background

Let F be a field. For our purposes it suffices to consider only finite dimensional vector spaces
over F.

Definition 2.1. Let L be a vector space equipped with a bilinear map [ · , · ] : L×L→ L, called
a bracket, such that for all x, y, z ∈ L the (left) Leibniz identity: [x, [y, z]] = [[x, y], z]+ [y, [x, z]]
holds. Then L is called a (left) Leibniz algebra.

1Subject classification: Primary = 17A32 and Secondary = 17A60 Keywords: Leibniz algebra, cyclic Leibniz
algebra, low dimensional examples
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Briefly, a (left) Leibniz algebra is an algebra whose left multiplication operators are deriva-
tions. Similarly we could assume that right multiplication operators are derivations and define
the notion of a right Leibniz algebra. Just as with many other algebraic constructions our choice
of left versus right is arbitrary. All of our results for left Leibniz algebras can easily be translated
to results for right Leibniz algebras. For the remainder of the paper Leibniz algebra will mean
left Leibniz algebra.

Notice that the Leibniz identity could replace the Jacobi identity in the definition of a Lie
algebra. In fact, the left Leibniz identity, the corresponding right Leibniz identity: [[y, z], x] =
[y, [z, x]]+[[y, x], z], and the Jacobi identity: [[x, y], z]+[[y, z], x]+[[z, x], y] = 0 are all equivalent
if we assume our bracket is bilinear and alternating: [x, x] = 0 for all x. We refer the reader to
[DMS] for more details concerning basic definitions related to Leibniz algebras.

Definition 2.2. For L a Leibniz algebra, Leib (L) = spanF{[x, x] | x ∈ L}.

We have that L is a Lie algebra if and only if Leib (L) = {0}. Notice that Leib (L) is a
(two-sided) ideal of L. Moreover, L/Leib (L) is the largest quotient of L that is a Lie algebra.
Specifically, if I is any ideal of L such that L/I is a Lie algebra, then Leib (L) ⊆ I. Here we
use the term ideal in the familiar Lie algebra sense: a subalgebra I of a Leibniz algebra L is a
(two-sided) ideal of L if and only if [L, I] and [I, L] are both contained in I. We write I / L
when I is a ideal of L.

Many other definitions extend directly from Lie to Leibniz algebras. As a second example,
we say L is an abelian Leibniz algebra if and only if [L,L] = {0}, that is if [x, y] = 0 for all
x, y ∈ L. The definitions of nilpotency and solvability also carry over without modification.

Definition 2.3. Recall that L1 = L and Lj+1 = [L,Lj ] for j ≥ 1 gives us the lower central
series. L is nilpotent of class n if Ln+1 = {0} but Ln 6= {0}. In particular, L is nilpotent if
Ln = {0} for some n ≥ 1. Likewise, L(0) = L and L(j+1) = [L(j), L(j)] for j ≥ 0 gives us the
derived series. L is solvable if L(n) = {0} for some n ≥ 0.

The proofs of many basic results given in introductory Lie algebra texts such as [EW] apply
just as well to Leibniz algebras. In particular, abelian implies nilpotent and nilpotent implies
solvable. Recall that rad(L) is the largest solvable ideal of L. As with Lie algebras, this is just
the sum of all ideals I of L such that I itself is a solvable algebra. Likewise, nil(L) is the largest
nilpotent ideal.

The notion of internal direct sum for Leibniz algebras also carries over from Lie theory. As
with Lie algebras, if L = L1⊕· · ·⊕Ln is an internal direct sum of Leibniz algebras, each Li is in
fact an ideal of L and L is isomorphic to the external direct sum of Leibniz algebras L1, . . . , Ln,
defined in the obvious way.

Definition 2.4. Let L be a Leibniz algebra with subalgebras L1, . . . , Ln. We write L = L1⊕· · ·⊕
Ln, an internal direct sum of Leibniz algebras, if L = L1 ⊕ · · · ⊕ Ln as subspaces and [x, y] = 0
for any x ∈ Li and y ∈ Lj where i 6= j.

It is not hard to show that for Ij /Lj , we have (L1⊕· · ·⊕Ln)/(I1⊕· · ·⊕In) ∼= (L1/I1)⊕· · ·⊕
(Ln/In) with the direct sum on the right an external direct sum. Likewise, Z(L1 ⊕ · · · ⊕ Ln) =
Z(L1)⊕· · ·⊕Z(Ln), Leib (L1 ⊕ · · · ⊕ Ln) = Leib (L1)⊕· · ·⊕Leib (Ln), and [L1⊕· · ·⊕Ln, L1⊕
· · · ⊕ Ln] = [L1, L1]⊕ · · · ⊕ [Ln, Ln].

Some important definitions from Lie theory require minor modifications as we move to Leib-
niz algebras. For example, if we apply the Lie theory definitions of simple and semisimple
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algebras directly to Leibniz algebras, both simple and semisimple Leibniz algebra would neces-
sarily be Lie and thus there would be nothing new to consider. We modify these definitions for
Leibniz algebras as follows:

Definition 2.5. Let L be a Leibniz algebra. L is simple if and only if [L,L] 6= Leib (L) and
{0}, Leib (L), and L are the only ideals of L. L is semisimple if and only if rad(L) = Leib (L).

When L is also a Lie algebra, Leib (L) = {0}, so these definitions collapse back down to the
usual definitions for a Lie algebra. In fact, these definitions guarantee that L is simple (resp.
semisimple) as a Leibniz algebra if and only if L/Leib (L) is simple (resp. semisimple) as a Lie
algebra.

When working with Lie algebras, taking powers of elements is uninteresting: x1 = x and
then x2 = [x, x] = 0 because of the alternating axiom. In Leibniz algebras much more is possible.
We fix the notation x1 = x, x2 = [x, x], and in general, xn+1 = [x, xn] for n ≥ 1. Consider the
following basic, well-known result:

Lemma 2.6. Let L be a Leibniz algebra and x, y ∈ L. Then [[x, x], y] = 0 and more generally
[xn, y] = 0 for all n ≥ 2. Moreover, the only potentially non-zero nth-power of x is xn =
[x, [x, . . . , [x, x] · · · ]]︸ ︷︷ ︸

n−times

.

Proof: The Leibniz identity states that [x, [x, y]] = [[x, x], y] + [x, [x, y]] so that 0 = [[x, x], y].
Assume inductively that [xn, z] = 0 for any z ∈ L and some n ≥ 2. The Leibniz identity
states that [x, [xn, y]] = [[x, xn], y] + [xn, [x, y]]. By our inductive hypothesis, we have [x, 0] =
[xn+1, y] + 0 so that [xn+1, y] = 0.

Finally, the only first and second powers of x are x1 = x and x2 = [x, x]. Third powers of
x can be written either as x3 or [[x, x], x] = 0. Assume that all kth-powers of x other than xk

are 0 where 1 ≤ k < n and let w be some nth-power of x. Then w = [u, v] where u and v are
kth and `th-powers of x such that k + ` = n. By induction, if u 6= 0 and v 6= 0, we must have
u = xk and v = x`. So either k ≥ 2 and thus w = [u, v] = [xk, v] = 0 or k = 1 and we have
w = [u, v] = [x, x`] = x`+1 = xn. �

We can see that generally Leibniz algebras are not power associative. Notice that for a right
Leibniz algebra we would have that the only potentially non-zero powers would be of the form
[[· · · [x, x], . . . , x], x]. This means that if an algebra was both a left and right Leibniz algebra,
the only non-zero power could be x2 = [x, x]. In fact, L = spanF{x, x2} where [x, x] = x2,
[x, x2] = [x2, x] = [x2, x2] = 0 gives an example of a simultaneously left and right Leibniz
algebra which is not a Lie algebra.

3 Cyclic Leibniz Algebras

A cyclic Leibniz algebra is a Leibniz algebra that can be generated from a single element. We
do not consider cyclic Lie algebras since the only cyclic Lie algebras are either the trivial algebra
{0} or the 1-dimensional abelian Lie algebra. Scofield and Sullivan [SS] have classified complex
cyclic Leibniz algebras. In this section, we give a similar construction which allows us to classify
cyclic (left) Leibniz algebras over an arbitrary field.
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Definition 3.1. Let L be a Leibniz algebra. L is cyclic if and only if there exists some x ∈ L
such that L = 〈x〉 = spanF{xk | k = 1, 2, . . . }. If L = 〈x〉, we call x a generator of L.

The trivial algebra {0} = 〈0〉 is cyclic. Likewise, any 1-dimensional algebra is cyclic as it is
generated by any non-zero element.

Let L 6= {0} be a cyclic (left) Leibniz algebra and fix a generator x 6= 0. By defini-
tion L = 〈x〉 = {xk | k = 1, 2, . . . } and since L is finite dimensional, we must have that
{x, x2, · · · , xn+1} is linearly dependent for some n ≥ 1. Let n be the smallest such power. This
means that {x, x2, . . . , xn} is linearly independent and xn+1 can be written as a linear combina-
tion of {x, . . . , xn}. Consequently all higher powers of x can be written as a linear combination
of x, x2, . . . , xn. Thus β = {x, x2, . . . , xn} is a basis for L and so dim(L) = n.

We have xn+1 ∈ L = 〈x〉 = spanF{x, x2, . . . , xn}. Let xn+1 =
n∑
i=1

cix
i where ci ∈ F. When

dim(L) = n > 1, Lemma 2.6 guarantees 0 = [x, 0] = [x, [xn, x]]. Applying the Leibniz identity
and Lemma 2.6 once more yields

0 = [x, [xn, x]] = [[x, xn], x] + [xn, x2] = [xn+1, x] + 0 = c1x
2 +

n∑
i=2

ci[x
i, x] = c1x

2.

Since dim(L) = n > 1, we conclude x2 6= 0 and thus c1 = 0. Therefore, xn+1 =
n∑
i=2

cix
i, a

summation that does not involve i = 1.

It turns out that the necessary condition that xn+1 =
n∑
i=2

cix
i for some c2, . . . , cn ∈ F is also

sufficient for any n-dimensional cyclic Leibniz algebra L = 〈x〉.

Proposition 3.2. Fix n ≥ 1 and c2, . . . , cn ∈ F and let L = spanF{x, x2, . . . , xn} be an n-
dimensional vector space. Define a bilinear operation on the basis {x, x2, . . . , xn} as follows:

[x, xj ] = xj+1 for 1 ≤ j < n, [x, xn] =
n∑
i=2

cix
i, and [xk, x`] = 0 for k ≥ 2, 1 ≤ ` ≤ n. Then

L = 〈x〉 is a cyclic Leibniz algebra.

Proof: Clearly L is a cyclic algebra equipped with a bilinear operation. It just remains to verify
the Leibniz identity. It is enough to do so on our basis. We note that when n = 1, xn+1 = x2 = 0
and the Leibniz identity is [x, [x, x]] = [x, 0] = 0 = 0 + 0 = [0, x] + [x, 0] = [[x, x], x] + [x, [x, x]].
Assume n > 1 and let 1 ≤ i, j, k ≤ n.

If i ≥ 2, then

[xi, [xj , xk]] = 0 = 0 + 0 = [0, xk] + [xj , 0] = [[xi, xj ], xk] + [xj , [xi, xk]].

If i = 1 and j = 1, then

[x, [x, xk]] = 0 + [x, [x, xk]] = [x2, xk] + [x, [x, xk] = [[x, x], xk] + [x, [x, xk]].

If i = 1 and 2 ≤ j < n, then

[x, [xj , xk]] = [x, 0] = 0 = 0 + 0 = [xj+1, xk] + [xj , xk+1] = [[x, xj ], xk] + [xj , [x, xk]].

If i = 1 and j = n > 1, then

[x, [xn, xk]] = [x, 0] = 0 =
n∑

m=2

cm[xm, xk] = [xn+1, xk] + 0 = [[x, xn], xk] + [xn, [x, xk]].
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Notice that here we used the fact that our sum begins at m = 2 so [xm, xk] = 0. �

For n > 0 fix a cyclic Leibniz algebra L with basis β = {x, x2, . . . , xn}. Next, we will further
investigate the structure of this algebra by considering Leib(L) and the derived series of L. Note
that by definition x2 ∈ Leib(L). But then since Leib(L) is an ideal of L, xj ∈ Leib(L) for
all j ≥ 2. Since brackets among elements of L never result in an element involving x itself,
we conclude Leib(L) = span

{
x2, x3, · · · , xn

}
= [L,L], an abelian Leibniz algebra of dimension

n− 1. It quickly follows that the derived series for L is given by

L(0) = L ) L(1) = [L,L] = span
{
x2, x3, · · · , xn

}
) L(2) = {0} .

The series goes to zero and thus cyclic Leibniz algebras are always solvable.
We next consider the lower central series of the cyclic Leibniz algebra L = 〈x〉 with basis

β = {x, x2, . . . , xn} and xn+1 =
n∑
i=2

cix
i. First consider the case when xn+1 = 0, that is when

c2 = c3 = · · · = cn = 0. Then keeping in mind that only left multiplication by x can yield
a nonzero result, we have [L, span{xm, xm+1, . . . , xn}] = span{[x, xm], [x, xm+1], . . . , [x, xn]} =
span{xm+1, . . . , xn}. This means that Lj = span{xj , . . . , xn} for 1 ≤ j ≤ n and Ln+1 = {0}. In
other words, L is nilpotent of class n.

Next assume that xn+1 6= 0. In particular, assume cj = 0 for all j < k and ck 6= 0. Let 1 ≤
m ≤ k and consider [L, span{xm, . . . , xn}]. Again, only left multiplication by x yields a non-zero
result so that [L, span{xm, . . . , xn}] = span{xm+1, . . . , xn, xn+1}. If m < k, xn+1 =

∑n
`=k c`x

` ∈
span{xm+1, . . . , xn} so that [L, span{xm, . . . , xn}] = span{xm+1, . . . , xn}. If m = k we have
xn+1 = ckx

k +
∑n

`=k+1 c`x
` with ck 6= 0. Thus span{xm+1, . . . , xn+1} = span{xk+1, . . . , xn+1} =

span{xk, . . . , xn} and in this case [L, span{xk, . . . , xn}] = span{xk, . . . , xn}. In particular,
[L, span{xm, . . . , xn}] = span{xmin(k,m+1), . . . , xn}. This means Lm = span{xm, . . . , xn} for
1 ≤ m < k and Lk = Lk+1 = · · · = span{xk, . . . , xn}. Proposition 3.3 summarizes our findings.

Proposition 3.3. Let L be an n-dimensional cyclic Leibniz algebra. Then either L is nilpotent
of class n or L ) L2 ) · · · ) Lk = Lk+1 = · · · 6= {0} for some 2 ≤ k ≤ n. In this case, we say
that L is cyclic of type k. Moreover, let x be any generator for L. Then L is nilpotent if and

only if xn+1 = 0. If L is not nilpotent and of type k, then xn+1 =
n∑̀
=k

c`x
` for some ck, . . . , cn ∈ F

and ck 6= 0. In particular, nilpotency and type do not depend on the choice of generator.

As we turn our attention towards a classification of cyclic Leibniz algebras, again let L 6= {0}
be an n-dimensional cyclic Leibniz algebra generated by x with basis β = {x, x2, . . . , xn} and

xn+1 =
n∑
j=2

cjx
j . Using an approach introduced in [BCGHHZ], we consider the left multiplication

operator Lx : L→ L defined by Lx(z) = [x, z]. We have that Lx(xj) = xj+1 for 1 ≤ j < n and
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Lx(xn) =
n∑
j=2

cjx
j . Thus we get the following coordinate matrix relative to the basis β:

[Lx]β =



0 0 · · · · · · 0 0 0
1 0 · · · · · · 0 0 c2
...

. . .
. . .

...
...

...
...

. . .
. . . 0 0

...

0
. . . 1 0 cn−1

0 0 · · · · · · 0 1 cn


The matrix [Lx]β is the companion matrix to the polynomial p(t) = tn − cntn−1 − · · · − c2t and
thus the linear operator Lx has characteristic polynomial p(t). Note that the polynomial p(t) is
in direct correspondence with our defining relation for xn+1.

Suppose that y =
n∑
i=1

bix
i ∈ L. Then Ly(xj) =

[
n∑
i=1

bix
i, xj

]
=

n∑
i=1

bi[x
i, xj ] = b1[x, x

j ] =

b1x
j+1 since [xi, xj ] = 0 for i ≥ 2. This means [Ly]β = b1[Lx]β. With only small, obvious modi-

fications, the standard approach to determining the characteristic polynomial for a companion
matrix (see, for example, [HC] Theorem 1 page 228) shows that the matrix [Ly]β and thus the
linear operator Ly has characteristic polynomial tn−b1cntn−1−b21cn−1t

n−2−· · ·−bn−1
1 c2t. Note

that if y is a generator2 for L, using the correspondence between the characteristic polynomial

of Ly and our defining relation for yn+1, we see yn+1 =
n∑
i=2

bn−i1 ciy
i.

In summary for n ≥ 2 and any (c2, . . . , cn) ∈ Fn−1 there is an n-dimensional cyclic Leibniz al-

gebra L with generator x such that {x, x2, . . . , xn} is a basis for L and xn+1 =
n∑
j=2

cjx
j . If y is any

other generator with y =
n∑
i=1

bix
i then {y, y2, . . . , yn} is a basis for L and yn+1 =

n∑
j=2

bn−j1 cjy
j . For

n ≥ 2, define an equivalence relation on Fn−1 such that (c2, . . . , cn) ∼ (bn−1c2, b
n−2c3, . . . , bcn)

for any b ∈ F − {0}. Denote the equivalence classes as [(c2, . . . , cn)]. This equivalence relation
allows a simple classification of cyclic Leibniz algebras.

Theorem 3.4. Up to isomorphism the only cyclic Leibniz algebras of dimensions 0 and 1 are
the trivial {0} algebra and the 1-dimensional abelian Lie algebra. For n ≥ 2, up to isomorphism
there is exactly one n-dimensional cyclic Leibniz algebra associated with each equivalence class
[(c2, . . . , cn)] where (c2, . . . , cn) ∈ Fn−1.

The nilpotent cyclic Leibniz algebras are associated with the class [(0, . . . , 0)] = {(0, . . . , 0)}.
Cyclic Leibniz algebras of type k are associated with the class [(0, . . . , 0, ck, . . . , cn)] for some
ck, . . . , cn ∈ F with ck 6= 0. In this case, dim(Lk) = n− k + 1 and Lk = Lk+1 = · · · .

The classification of complex cyclic Leibniz algebras obtained by Scofield and Sullivan [SS]
split isomorphism classes of cyclic Leibniz algebras into cases of nilpotent or type k. For algebras
of type k, they insist on a normalized generator such that ck = 1. Note that their equivalence

2If y is a generator, we must have b1 6= 0. Otherwise, the algebra generated by y would be contained in
span{x2, . . . , xn} 6= L. Note also that for any b1 6= 0, y = b1x is a generator.
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class [(ck+1, · · · , cn)] corresponds to our class [(0, . . . , 0, 1, ck+1, . . . , cn)]. By avoiding this nor-
malization we no longer need the existence of roots of unity and our equivalence relation is much
simpler.

As in our construction, Batten Ray et. all. [BCGHHZ] identify the matrix for the left
multiplication operator as a companion matrix to the polynomial p(t). They use this observation
as a tool to develop several important properties of cyclic Leibniz algebras. In particular they
give a construction of the unique Cartan subalgebra for each cyclic Leibniz algebra, L, and in
the process describe all maximal subalgebras of L as well as the minimal ideals of L and the
unique maximal ideal of L.

4 A Class of Non-Lie, Non-Cyclic Leibniz Algebras

In this section we introduce a class of non-cyclic Leibniz algebras and study their properties.
Fix some n ≥ 1 and let L be the n+1 dimensional vector space with basis β = {x, x2, . . . , xn, y}.
To determine a bilinear operation on L it is enough to specify how multiplication works on basis
elements.

Example 4.1. Let L be the algebra with basis β = {x, x2, . . . , xn, y} and the bilinear bracket
defined on the basis elements as follows: (1) [x, xj ] = xj+1, 1 ≤ j < n; (2) [x, xn] = xn+1 = 0;
(3) [xk, xj ] = [xk, y] = 0 for all 2 ≤ k ≤ n and 1 ≤ j ≤ n; (4) [x, y] = x, [y, xj ] = −jxj for
1 ≤ j ≤ n; (5) [y, y] = 0.

To see that L is a Leibniz algebra, we need to verify that the Leibniz identity holds. First,
notice that 〈x〉 = span{x, x2, . . . , xn} forms a n-dimensional cyclic, nilpotent Leibniz subalgebra.
Likewise, 〈y〉 = span{y} forms a 1-dimensional cyclic Leibniz subalgebra which is an abelian Lie
algebra. Thus we only need to check the Leibniz identity among triples of basis elements which
involve both x and y.

First, triples that involve two y occurrences:

• For 1 ≤ j ≤ n, [y, [y, xj ]] = 0 + [y, [y, xj ]] = [0, xj ] + [y, [y, xj ]] = [[y, y], xj ] + [y, [y, xj ]].

• For 2 ≤ j ≤ n, [xj , [y, y]] = [xj , 0] = 0 = 0 + 0 = [0, y] + [y, 0] = [[xj , y], y] + [y, [xj , y]] and
for j = 1, [x, [y, y]] = [x, 0] = 0 = x− x = [x, y] + [y, x] = [[x, y], y] + [y, [x, y]].

• For 2 ≤ j ≤ n, [y, [xj , y]] = [y, 0] = 0 = 0 + 0 = [0, y] + [xj , 0] = [[y, xj ], y] + [xj , [y, y]] and
for j = 1, [y, [x, y]] = [y, x] = −x = −[x, y] + 0 = [−x, y] + [x, 0] = [[y, x], y] + [x, [y, y]].

Finally, triples that involve one y occurrence:

• Note that [y, xj ] = −jxj holds even when j = n+ 1 since xn+1 = 0. Let 1 ≤ k ≤ n.

• For 2 ≤ j ≤ n, [y, [xj , xk]] = [y, 0] = 0 = −j[xj , xk] = [−jxj , xk] + 0 = [[y, xj ], xk] +
[xj , [y, xk]] and for j = 1, [y, [x, xk]] = [y, xk+1] = −(k + 1)xk+1 = [−x, xk] + [x,−kxk] =
[[y, x], xk] + [x, [y, xk]].

• For 2 ≤ j ≤ n, [xj , [y, xk]] = 0 = 0 + 0 = [0, xk] + [y, 0] = [[xj , y], xk] + [y, [xj , xk]] and
for j = 1, [x, [y, xk]] = [x,−kxk] = −kxk+1 = xk+1 − (k + 1)xk+1 = [x, xk] + [y, xk+1] =
[[x, y], xk] + [y, [x, xk]].
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• For 2 ≤ j ≤ n, [xj , [xk, y]] = 0 = 0 + [xk, 0] = [[xj , xk], y] + [xk, [xj , y]] and for j = 1 and
k ≥ 2, [x, [xk, y]] = [x, 0] = 0 = [xk+1, y] + 0 = [[x, xk], y] + [xk, [x, y]]. When j = k = 1,
[x, [x, y]] = 0 + [x, [x, y]] = [[x, x], y] + [x, [x, y]].

We use the remainder of this section to investigate the structure of the Leibniz algebra L
described in Example 4.1. Let us begin by determining the lower central series of L, Leib (L),
and the derived series for L. Since none of the brackets output a y, [L,L] must be contained
in 〈x〉 = span{x, x2, . . . , xn}. We have seen that [−y, x] = x ∈ [L,L] and therefore 〈x〉 ⊆ [L,L]
and hence L2 = [L,L] = 〈x〉 In fact, it follows by induction that Lk = 〈x〉 for k ≥ 2. We then
have the lower central series

L = span{x, x2, . . . , xn, y} ) L2 = L3 = · · · = span{x, x2, . . . , xn} 6= {0},

and thus L is not nilpotent.
Next observe B = span

{
xj | j ≥ 2

}
is an abelian ideal of codimension 2 in L so that

B ⊆ Leib(L). Also, L/B is a Lie algebra and thus Leib(L) ⊆ B. Therefore Leib(L) = B =
span

{
xj | j ≥ 2

}
. Furthermore, since [x+Leib (L) , y+Leib (L)] = [x, y]+Leib (L) = x+Leib (L),

we have that L/Leib (L) is the non-abelian 2-dimensional Lie algebra. In addition, the derived
series is given by

L(0) = L ) L(1) = 〈x〉 ) L(2) = Leib(L) = span
{
xj | j ≥ 2

}
) L(3) = {0}

and thus L is solvable.
Could it be that L is simply a sum of cyclic Leibniz algebras? Recall that for a cyclic Leibniz

algebra C, C/Leib (C) is the 1-dimensional abelian Lie algebra. Thus if M = C1 ⊕ · · · ⊕C` is a
Leibniz algebra direct sum of cyclic Leibniz algebra C1, . . . , C`, then M/Leib (M) = (C1⊕ · · · ⊕
C`)/(Leib (C1) ⊕ · · · ⊕ Leib (C`)) ∼= (C1/Leib (C1)) ⊕ · · · ⊕ (C`/Leib (C`)) and so M/Leib (M)
is a direct sum of 1-dimensional abelian Lie algebras. In other words, M/Leib (M) is the `-
dimensional abelian Lie algebra. Since L/Leib (L) is not abelian, L is neither cyclic nor a
(Leibniz algebra) direct sum of cyclic subalgebras.

Also, since L is solvable, L = rad(L) and so L is (unsurprisingly) not semisimple. Also,
span{xm, xm+1, . . . , xn} for 1 ≤ m ≤ n are easily seen to be ideals. In particular, span{x, x2, . . . , xn}
is an ideal distinct from {0}, Leib (L), and L so that L is not simple. In summary,

Theorem 4.2. The Leibniz algebra L = span{x, x2, . . . , xn, y} with bracket structure given in
Example 4.1 is not nilpotent, semisimple, or simple. But L is solvable. Its maximal Lie algebra
homomorphic image, L/Leib (L), is the non-abelian 2-dimensional Lie algebra. Consequently L
is not a (Leibniz algebra) direct sum of cyclic Leibniz algebras.

5 Adjoining a Module

In this section we offer a second class of examples. By first extending the familiar Lie algebra
construction of adjoining a module to an algebra to the context of Leibniz algebras and then
considering adjoining a cyclic module to a nilpotent cyclic Leibniz algebra, we obtain a class of
algebras with similar properties to those of the previous section except here we will have that
the maximal Lie algebra homomorphic image is abelian.
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Definition 5.1. Let L be a Leibniz algebra and M a vector space over F equipped with bilinear
maps [ , ] : L ×M → M and [ , ] : M × L → M (a left and a right action) such that for all
a, b ∈ L and m ∈M the following hold:

1. [a, [b,m]] = [[a, b],m] + [b, [a,m]]

2. [a, [m, b]] = [[a,m], b] + [m, [a, b]]

3. [m, [a, b]] = [[m, a], b] + [a, [m, b]]

We note that if L is a Lie algebra with L-module M and action x·m for x ∈ L and m ∈M ,
then left action [x,m] = x·m and right action [m,x] = −x·m turn M into a module viewing L
as merely a Leibniz algebra.

Example 5.2. Let L = span{x, x2, . . . , xn} be the n-dimensional nilpotent cyclic Leibniz algebra.
Consider the vector space M = span(β) with basis β = {y1, y2, . . . , yn}. Let 2 ≤ j ≤ n and
1 ≤ k ≤ n and define [xj , yk] = 0. When k < n define [x, yk] = yk+1 and let [x, yn] = 0. For
convenience let yn+1 = 0 so that [x, yk] = yk+1 for all 1 ≤ k ≤ n. Finally, let [yk, x

j ] = 0 for all
1 ≤ j ≤ n and 1 ≤ k ≤ n. In other words, the right action of L on M is trivial whereas x acts
in cyclic fashion on the left.

With these definitions, M is an L-Module. To see this we must verify the relations in
Definition 5.1. In relation 1, all terms are zero unless a = b = x. In this case relation 1 becomes
[x, [x,m]] = [[x, x],m] + [x, [x,m]] which is clearly true since [[x, x],m] = [x2,m] = 0. Relations
2 and 3 hold because all terms are zero as they each involve the trivial right action of L.

We show in the following proposition that for L a Leibniz algebra and M an L-module, the
vector space direct sum L ⊕M becomes a Leibniz algebra if for x1, x2 ∈ L and m1,m2 ∈ M
we define [x1 +m1, x2 +m2] = [x1, x2] + [x1,m2] + [m1, x2]. Notice that in the definition of the
bracket on L⊕M , [x1, x2] is the bracket in L, [x1,m2] is the left action of L on M , and [m1, x2]
is the right action of L on M .

Proposition 5.3. Let L be a Leibniz algebra and M an L-module. The vector space direct sum
L⊕M becomes a Leibniz algebra if for x1, x2 ∈ L and m1,m2 ∈M we define [x1+m1, x2+m2] =
[x1, x2] + [x1,m2] + [m1, x2]. Moreover, L is a subalgebra and M is an abelian ideal of L⊕M .

Proof: It is obvious that the bracket on L ⊕M is bilinear. We need to verify the Leibniz
identity. Let x1, x2, x3 ∈ L and m1,m2,m3 ∈M . Consider the following brackets:

[x1 +m1, [x2 +m2, x3 +m3]]︸ ︷︷ ︸
LMA

= [x1 +m1, [x2, x3] + [x2,m3] + [m2, x3]]

= [x1, [x2, x3]]︸ ︷︷ ︸
LeibnizA

+ [x1, [x2,m3]]︸ ︷︷ ︸
1A

+ [x1, [m2, x3]]︸ ︷︷ ︸
2A

+ [m1, [x2, x3]]︸ ︷︷ ︸
3A

[[x1 +m1, x2 +m2], x3 +m3]︸ ︷︷ ︸
LMB

= [[x1, x2], x3 +m3] + [[x1,m2], x3 +m3] + [[m1, x2], x3 +m3]

= [[x1, x2], x3]︸ ︷︷ ︸
LeibnizB

+ [[x1, x2],m3]︸ ︷︷ ︸
1B

+ [[x1,m2], x3]︸ ︷︷ ︸
2B

+ [[m1, x2], x3]︸ ︷︷ ︸
3B
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[x2 +m2, [x1 +m1, x3 +m3]]︸ ︷︷ ︸
LMC

= [x2 +m2, [x1, x3]] + [x2 +m2, [x1,m3]] + [x2 +m2, [m1, x3]]

= [x2, [x1, x3]]︸ ︷︷ ︸
LeibnizC

+ [m2, [x1, x3]]︸ ︷︷ ︸
2C

+ [x2, [x1,m3]]︸ ︷︷ ︸
1C

+ [x2, [m1, x3]]︸ ︷︷ ︸
3C

The module axioms 1, 2, and 3 for M guarantee that 1A = 1B + 1C, 2A = 2B + 2C, and
3A = 3B + 3C. The Leibniz identity for L guarantees that LeibnizA = LeibnizB + LeibnizC.
Putting these together we see that LMA = LMB + LMC and so the Leibniz identity holds on
L⊕M . �

Taking L and M as defined in Example 5.2, let K = L⊕M = span{x, x2, . . . , xn, y1, . . . , yn}.
We have that K is a Leibniz algebra using the above construction and can now investigate the
structure of this algebra.

For x ∈ L and m ∈ M , we have [x + m,x + m] = [x, x] + [x,m] + [m,x]. Therefore,
Leib (L⊕M) = Leib (L) ⊕ span{[x,m] + [m,x] | x ∈ L and m ∈ M}, where ⊕ represents
a vector space direct sum. Furthermore, we know that Leib (L) = span{x2, . . . , xn} and all
brackets (i.e., actions) between L and M either output 0 or something in span{y2, . . . , yn}. In
fact, [x, yk]+[yk, x] = yk+1+0 = yk+1 ∈ span{[x,m]+[m,x] | x ∈ L and m ∈M} for 1 ≤ k ≤ n.
Therefore, Leib (K) = span{x2, . . . , xn, y2, . . . , yn}.

Next we explicitly calculate the lower central series for K. First, looking at the brackets
for K we see that they never output any power of x smaller than x2 and never output y1.
Thus [K,K] ⊆ span{x2, . . . , xn, y2, . . . , yn}. But by definition, Leib (K) ⊆ [K,K]. Therefore,
[K,K] = Leib (K) = span{x2, . . . , xn, y2, . . . , yn}. We claim thatK` = span{x`, . . . , xn, y`, . . . , yn}
for 1 ≤ ` ≤ n and {0} = Kn+1 = Kn+2 = . . . so that K is nilpotent of class n. We proceed by
induction, notice that [x,K`] = span{x`+1, . . . , xn+1, y`+1, . . . , yn+1} where for convenience we
let xm = ym = 0 for m > n. Also, [xj ,K`] = [y,K`] = {0} for j ≥ 2. The result follows and
from it we observe that L is nilpotent.

Note that we could forgo the explicit construction of the lower central series and still arrive at
the nilpotency of K by applying a theorem of Bosko et. all. [BHHSS]. Every left multiplication
by an element of L on K is nilpotent and trivially left multiplication on K by elements from
M are nilpotent. Therefore since L ∪M is a Lie set (i.e., it is closed under brackets and spans
K), Jacobson’s refinement of Engel’s theorem for Leibniz algebras [BHHSS] shows K = L⊕M
is nilpotent.

Next we examine the structure of the cyclic subalgebras of K. Let z =
n∑
i=1

aix
i+

n∑
j=1

bjyj ∈ K.
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Then

z2 = [z, z] = a1

n−1∑
i=1

aix
i+1 + a1

n−1∑
j=1

bjyj+1 =
n∑
i=2

a1ai−1x
i +

n∑
j=2

a1bj−1yj and

z3 = [z, z2] = a1

n−1∑
i=2

a1ai−1x
i+1 + a1

n−1∑
j=2

a1bj−1yj+1 =

n∑
i=3

a21ai−2x
i +

n∑
j=3

a21bj−2yj .

In general,

z` =
n∑
i=`

a`−1
1 ai−`+1x

i +
n∑
j=`

a`−1
1 bj−`+1yj for 1 ≤ ` ≤ n and z` = 0 for ` > n.

As a consequence, if a1 = 0, then z2 = 0. If a1 6= 0 and 1 ≤ ` ≤ n then the coefficient of x` in z`

is a`−1
1 a`−`+1 = a`1 6= 0. In all cases zn+1 = 0 and thus by proposition 3.3 all cyclic subalgebras,

〈z〉, are nilpotent. For n > 1 they are either trivial (z = 0), 1-dimensional (z 6= 0 but a1 = 0), or
n-dimensional (a1 6= 0). For n = 1, they are either trivial or 1-dimensional. Our understanding
of the cyclic subalgebras of K plays a key role in understanding the structure of this Leibniz
algebra.

Theorem 5.4. The Leibniz algebra K = span{x, x2, . . . , xn, y1, y2, . . . , yn} with brackets given
in Example 5.2 and Proposition 5.3 is neither semisimple nor simple. But K is nilpotent of class
n and solvable. Its maximal Lie algebra homomorphic image, K/Leib (K), is the 2-dimensional
abelian Lie algebra. Also, for n > 1, K is not a (Leibniz algebra) direct sum of cyclic Leibniz
algebras.

Proof: We have already seen that K is nilpotent. Since K is nilpotent, it is also solvable.
Referring back to definitions, it is obvious that K is neither simple nor semisimple. By definition,
K/Leib (K) = span{x + Leib (K) , y1 + Leib (K)}. Notice that [x + Leib (K) , y1 + Leib (K)] =
[x, y1] + Leib (K) = y2 + Leib (K) = 0 + Leib (K), since y2 ∈ Leib (K). Hence K/Leib (K) is the
2-dimensional abelian Lie algebra.

Suppose that K is a (Leibniz algebra) direct sum of cyclic Leibniz algebras. We have seen
previously that if C = C1 ⊕ · · · ⊕ C` is a direct sum of cyclic algebras then C/Leib(C) =
C1/Leib(C1) ⊕ · · · ⊕ C`/Leib(C`) and that each Ci/Leib(Ci) is the one-dimensional abelian al-
gebra. Thus if K is a (Leibniz algebra) direct sum of cyclic subalgebras, it must be a sum
of exactly dim(K/Leib (K)) = 2 subalgebras. Considering that cyclic subalgebras of K have
dimensions 0, 1, and n and that dim(K) = 2n, we must have two cyclic subalgebras of dimension

n. Suppose that K = 〈z1〉 ⊕ 〈z2〉 where z1 =
n∑
i=1

aix
i +

n∑
j=1

bjyj and z2 =
n∑
i=1

cix
i +

n∑
j=1

djyj .

Since these are n-dimensional subalgebras we must have a1 6= 0 and c1 6= 0. But then

[z1, z2] = a1
n−1∑
i=1

cix
i+1 + a1

n−1∑
j=1

djyj+1. Notice that the coefficient of x2 in [z1, z2] is a1c1 6= 0.

Since [z1, z2] 6= 0, this is not a Leibniz algebra direct sum (contradiction). �

Note that when n = 1, K = span{x, y1} where [x, x] = [x, y1] = [y1, x] = [y1, y1] = 0 so K
is the 2-dimensional abelian Lie algebra and is in this trivial situation a direct sum of cyclic
subalgebras. For example, one such decomposition is K = 〈x〉 ⊕ 〈y1〉.
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