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Abstract

In this paper we introduce the reader to a foundational topic of differential geometry: the curvature of
a curve. To make this topic engaging to a wide audience of readers, we develop this intuitive introduction
employing only basic geometry without calculus and derivatives. It is hoped that this introduction
will encourage many more to both consider this mathematical notion and to develop enthusiasm for
mathematical studies.

1 Introduction

Ride a bike or drive a car. Hopefully, well before you end up in a ditch, you will recognize that not all curves
in a road are constructed equally: some curves are simply sharper or more curved than others. The subject
of differential geometry leads to the measuring (or quantifying) of curve curvature. Unfortunately, formally
investigating differential geometry at an introductory level requires at least differential and integral calculus
and linear algebra. Further, differential equations, tensor calculus as well as manifold theory are necessary
for more advanced treatments of the subject. However, an intuitive understanding of curve curvature is
approachable by high school and college students and their instructors.

The main goal of this article is to widen the audience of, and appreciation for, differential geometry by
developing the notion of curve curvature in an intuitive manner. We accomplish this goal in a number of
ways: First, we introduce, explore, and develop the notion of curvature using elementary geometry and a
minimal number of equations. Second, we have provided a number of online, dynamic applets throughout
the paper through which the reader can investigate and interact with these ideas directly without needing
to manipulate equations. Third, we also provide exploration questions, some of which make use one of the
applets, that could be used as homework or classroom projects. Growing from the authors’ experiences in
teaching, these explorations naturally fit into courses such as high school geometry, general liberal arts math,
and the calculus sequence. Last, the mathematical ideas introduced in the article are recreated and extended
in the form of a graphic novel. Altogether, these approaches widen the readership and applicability of this
exploration into curve curvature.
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Figure 1: Curvature Intuitively. This
parabola is most bent at C (the vertex) and least
bent at A. How do we measure this?

Curvature is recognized as one of the most fundamen-
tal topics in differential geometry. In fact, M. Spivak
devotes an entire volume [S.] to the study of curvature
within a historical framework. This volume is a won-
derful, modern treatment of the notion of curvature as
it evolved from the original investigations of L. Euler to
later extensions by C. F. Gauss and B. Riemann. In the
text, [O.] differential geometry is approached from the
viewpoint of E. Cartan. Aiming to present notions of
differential geometry to a wider audience with less math-
ematical background, B. O’Neill states “This book is an
elementary account of geometry of curves and surfaces.
It is written for students who have completed standard
courses in calculus and linear algebra, and its aim is to
introduce some of the main ideas of differential geometry”
([O.] page ix). This paper seeks to further simplify the
topic of curvature by making it accessible to students who
possess a rudimentary understanding of only geometry
and algebra. Considering only lines, circles, and ratios,
we present an intuitive, geometric understanding of this
subject. It is our hope that students may be interested in
continuing on to a more rigorous treatment of the subject

in the future.
Without reading advanced texts, everyone has an intuitive understanding of curvature; shapes like straight

lines ( ) have no curvature while shapes like the curve ( ∼ ) are curved. The idea of curvature is even
built into the names of these shapes (straight and curved). Delving deeper, one sees the challenge is not so
much to say “Yes, this shape is curved.” or “No, this shape is not curved.”, but rather to ask, for example,
“How curved is the shape at one point versus another point?” (see Figure 1). This more nuanced question
will be addressed and answered in this article.

Modern students, digital natives, are inundated with interactive, dynamic, graphical information and are,
therefore, more attuned to visual cues and information delivery than previous generations [P.]. As software
and device usage (e.g., apps, tablets, smartphones) become ubiquitously integrated into all aspects of our
lives, it seems fitting that students should be offered increased opportunities to dynamically interact with
mathematical concepts. To meet the needs of these students this article employs three novel learning aids for
the study of curve curvature: a limited pre-calculus–based tool set; a variety of interactive software demos;
and a graphic novel style in select sections. The interactive demos can be downloaded from the web and run
on a MAC or PC using the free Wolfram CDF player.1 These dynamic visualizations will communicate the
beauty of mathematics to a diverse audience in a manner far beyond that of static equations. The graphically
intensive treatment is stylistically similar to a cartoon or graphic novel. This, too, is common among this
generation’s school-age readers. Through this modality, images and text reverse roles; visuals are highlighted
with text playing a supporting role. These visual and software interactives will help connect the subject of
differential geometry and curve curvature to a broader audience including high school students and teachers.

1https://mathsci2.appstate.edu/~osbornejm/InteractiveDemos.html
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2 Tangent and Normal Vectors for Plane Curves

T

N

x

y

Figure 2: A Tangent (T ) and Normal (N) on a Sine Wave. The
normal is a vector perpendicular to the tangent, how do we choose
which one?

Imagine that you have a obtained
a straight piece of thin, malleable,
metallic wire. Lay this wire on a flat
surface like your kitchen table and
then begin to bend this wire into a
curved shape of your choice. The
only caveat is that, once you have
finished bending, your final curve
must be able to lay perfectly flat. A
curve made in this fashion is called
a plane curve (see Figure 2). Try to
make sure that you don’t introduce
any kinks or crossings into your wire
creation. That is, make sure that at
no place does it have a kink like f.
Also avoid wire crossings like # as they will add thickness to your curve and cause it to not lay flat. Now
imagine that onto your metal creation you place a small magnetic ball (•) that can be rolled from one end
to the other. Note that it will be possible to roll this small ball along the wire because there are no kinks or
crossings on which to get stuck.

As the magnetic ball moves along the plane curve, two vectors (i.e. arrows), the tangent (T ) and normal
(N) are created (see Figure 2). Imagine the ball loses its magnetic grip, the ball would fly away in the
direction given by the vector T . In other words, the direction of motion vector will be tangent to the curve
at the instance where the magnetism is lost. Note that, in our discussion, we have implicitly chosen a
beginning and end of our curve (typically from left to right). If the choice of beginning and end is reversed,
then the direction of every T will also be reversed. The vector N is perpendicular to T at each point on the
curve. However, since two vectors are perpendicular to T (see Figure 2), to uniquely define N , a choice must
be made. Here is how you choose: because of the bends built into the curve, the vector T changes direction
as the magnetic ball rolls along the curve. That is, the turning of the curve changes T . The vector N is
chosen based on its ability to predict future turns in the curve.
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Figure 3: The Normal Vector. The vector N predicts the direction in which the vector T will turn. Note
that at inflection points, denoted by

⊙
, the normal vector abruptly changes direction.

Notice that, during the first bend in the curve in Figure 3, the vector T is turning down as the magnetic
ball moves from left to right, as was predicted by the normal vector N pointing down. In the next bend, the
vector T turns up, again predicted by the normal vector N pointing up. There are points on a curve where
the normal vector is not uniquely defined. At inflection points, denoted by

⊙
in Figure 3, the vector T

momentarily stops changing. At such a point, predicting future tangents is impossible, and so we arbitrarily
choose one of the two possible N ’s. The vectors N will abruptly change direction from pointing down/up to
up/down at these points of inflection.
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3 Curves of Constant Curvature: Lines and Circles
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Figure 4: A Line Has Zero Curvature.

Now that we know how T and N work together
to indicate how a plane curve turns, we can say
that:

At each point, curve curvature quantifies the de-
gree of deviation of the curve from a straight
line.

The change in T is used to precisely quantify this
deviation. Intuitively, if a curve has a sharp turn
and so T is changing rapidly, then the curvature
should have a large value. In contrast, if a turn is
gradual, and so T is changing slowly, then curvature
should be small. Note that since T and N change
together we can quantify these deviations using N
just as well as T . When discussing lines, studying
the change in T is natural, while in the case of cir-
cles, N is a better choice.

When a curve has a constant curvature value
from one location to another, one can imagine the
curve as being constructed from a series of uniformly
bent components. The first example of a curve of
constant curvature is a line. The line ( ) can
be viewed as an object comprised of a series of the
smaller straight–line–components (−−) each with no curvature (see Figure 4). Notice also in Figure 4 the
direction vector T does not turn. Since T does not change, the curvature should have a constant value 0.
Recall that when T does not change, N is not uniquely determined. In Figure 4 we made a choice of N
pointing up; but N pointing down is equally valid.

A circle is another example of a curve with constant curvature. Like a toy train set which has been
shipped to you as an unassembled set of smaller track pieces, one may build a complete circular track from
multiple copies of a single circular–arc of constant curvature. Since a circle deviates from a straight–line in
the same way at every point, while its curvature should be constant, it should not be zero.

Let us now quantify the non-zero value describing this curvature. Recall that curvature can be determined
by the change in the normal vector. Imagine a magnetic ball (•) rolling around a circle. As the ball makes
one full transit around the circle it travels a distance of 2πr. Figure 5(b) shows that as the ball make one
full circuit, the normal vector itself makes one full turn. Therefore the tip-end of N travels a distance of 2π
as the ball travels a distance of 2πr. Curvature is the ratio of these two distances.

Therefore, the curvature, denoted κ�, of a circle of radius r is given by the mathematical formula,

κ� =
distance traveled by N turning

distance traveled by (•)
=

2π

2πr
=

1

r
. (1)

We can now notice that the curvature of a circle is the reciprocal of its radius. Let us now discuss why this
formula matches our intuitive understanding of curvature. Imagine the magnetic ball on a circular track
with a large radius. From the perspective of the ball, the track will appear to have a gradual turn; the
corresponding curvature should have a very small value. Notice that the reciprocal of a large radius gives us
a small curvature. Alternatively, if the track has a small radius, then, from the perspective of the ball, the
track will appear to have a sharp turn. The reciprocal of a small radius gives us a large curvature. So, while
at first glance the curvature of a circle being the reciprocal of its radius might seem strange, in retrospect it
perfectly matches our intuition.
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(a) The Vectors T and N on the Circle. Because T and N
change uniformly, a circle has a constant, non-zero curvature.
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(b) Normal Vectors N on the Unit Circle. As the ball
travels once around the circle pictured left, N turns once
around the unit circle.

Figure 5: A Circle of Radius r: A Curve of Constant, Non-Zero Curvature.

4 The Osculating Circle of a Plane Curve and Curve Curvature

Equation (1) relates the curvature of a circle to its radius, and is the key to developing a tool that can
be applied to curves of non-constant curvature. This tool is called the osculating circle. Except at points
where the curve is perfectly flat, there is a circle of some radius that osculates (which means, kisses) the
curve. The osculating circle can be viewed as the best circular approximation of the curve at that in-
stant. This means that this circle is of the perfect radius so as to conform to the shape of the curve
at that point. Figure 6 shows that as we zoom in the circle perfectly matches the curve at that point.
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Radius of Osculating Circle is R = 1.00074
Curvature of Curve is 1/R = 0.999263
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Radius of Osculating Circle is R = 1.00074
Curvature of Curve is 1/R = 0.999263

Figure 6: An Osculating Circle. The cir-
cle of radius 1 is the best circular approxi-
mation of this function at this location.

As shown in Figure 7, this circle’s radius can change based
on the location it kisses. That is, for the circle to conform to
the contours of the curve it must be able to change its shape
(and therefore, its radius) accordingly. In fact, Figure 7 shows
a tacit relationship between the radius of the osculating circle
and the curvature of the curve. At locations where the curve
has a large curvature, for example at the point where the left–
most circle kisses the curve, the radius of the osculating circle is
small. The opposite is true at the point where the right most
circle kisses the curve; the curve is flatter and so the radius
of the osculating circle is larger. The middle circle kisses a
point where the curve appears to be nearly flat (almost line-
like), and therefore the radius of the osculating circle is much
larger. These observations strongly suggest that we define the
curvature of a curve at a given point as simply the reciprocal
of the radius of the osculating circle at that point.

At a point where the curve is perfectly flat, we define the
curvature to be 0. If we try to draw an osculating circle at such

a point, we can never make the radius large enough for the circle to conform to the curve. For the circle to
conform, it would have to have an infinite radius or, in other words, the best approximation at such a point
is a line and not a circle. As its radius grows, a circle limits to a line. Likewise, the reciprocal of its radius
limits to 0.

5



x

y

Figure 7: A Sine Curve with Osculating Circles. At each point, an osculating
circle has the perfect radius so as to conform to the curve. Note the inverse
relationship; big circles correspond with little curvature and vice-versa.

Think back to the
curve you created by
bending your long piece
of straight wire. Your
curve will most likely not
have constant curvature
since you will have de-
cided to make a more
interesting shape than a
line or a circle. And
while your curve, on the
whole, is not a line or
a circle, you can think
of your curve as being
constructed from a series
of various sized straight–
line segments and circu-
lar bends. At flat points

the curvature is defined to be 0, while at any other point the curvature of the curve is defined to be the
curvature of its osculating circle. That is, as a mathematical formula, we define the curvature κ� of generic
curve as 0 at flat points and otherwise as κ� = 1/r� where r� is the radius of the osculating circle.
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5 Example: A Parabola Revisited

Equipped with an intuitive, yet formal definition of curve curvature, it is possible to answer some more
nuanced differential geometric questions regarding curvature.

• (Question) Which points on the parabola in Figure 8(a) are the most and least curved?

• (Answer) The answer to this question is simply an application of drawing osculating circles, computing
their reciprocals, and then ordering the resulting values. (See Figure 9.)
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(a) A Parabola.

x

y

(b) A Parabola with Osculating Circles.

Figure 8: Curvature for a Parabola. Considering the points A, B, and C, where does the parabola have
largest and smallest curvatures? A careful answer requires analyzing the osculating circles at these points.
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Radius of Osculating Circle is R = 26.0794
Curvature of Curve is 1/R = 0.0383444

(a) (Point A, r� ≈ 26.08)
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Radius of Osculating Circle is R = 1.9057
Curvature of Curve is 1/R = 0.524741

(b) (Point B, r� ≈ 1.91)
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Radius of Osculating Circle is R = 0.5
Curvature of Curve is 1/R = 2.

(c) (Point C, r� = 0.5)

Figure 9: Curvature Values at A, B, and C. Computing the reciprocals of the radius of the osculating
circles gives the answer as A (least curved, κ� ≈ 0.04), B (in the middle, κ� ≈ 0.52), then C (most curved,
κ� = 2) as one moves towards the vertex of the parabola.
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6 Example: The Fresnel Spiral
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Figure 10: The Fresnel Spiral

Another example will illustrate more nuanced questions from differential
geometry by analyzing the Fresnel (“fre-nel”) spiral.

• (Question) Given curvature values at the three locations in Figure
10, can one predict the curvature at any other point?

• (Answer) The answer to this question begins with an analysis of
osculating circles (see Figure 11) followed by a search for a pattern
(see Figure 12).

Imagine, again, that a magnetic ball is attached to metal wire bent into
the shape of the Fresnel spiral, and that you have propelled this ball
along the wire by the application of some force. With your stop-watch
in hand, imagine further that you collect data on the location (x, y) of
the ball at a measured time. The data you collect is shown in Figure 12.
Analyzing this data shows that after 3 units of time the magnetic ball
was at point A, after 6 units of time it was at point B, and finally, after
9 units of time, it was at point C. Further analysis shows that, for every
1 unit of time, the curvature of the curve increases by 0.2. It follows that
the curvature of the Fresnel spiral increases linearly with the amount of
time spent following the spiral. That is, κ�(t) = 0.2t which predicts the
curvature at a point (x, y) if one has measured the time it took to get to

that point. For example, it takes t = 1 unit of time to reach the point (x, y) ≈ (1.60, 0.09) and therefore the
curvature of the curve at this point is 0.2 · 1 = 0.2. 2
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(a) (Point A, r� ≈ 1.65)
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Radius of Osculating Circle is R = 0.828932
Curvature of Curve is 1/R = 1.20637

(b) (Point B, r� ≈ 0.83)
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Radius of Osculating Circle is R = 0.507509
Curvature of Curve is 1/R = 1.97041

(c) (Point C, r� ≈ 0.55)

Figure 11: Curvature Values at A, B, and C. Finding osculating circles at these three points and
computing their reciprocals gives A (κ� ≈ 0.61), B (κ� ≈ 1.21), and C (κ� ≈ 1.81).

t (x,y) r
⊙

k
⊙

1 ( 1.60 0.09 ) 4.92 0.20
2 ( 3.07 0.67 ) 2.47 0.40
3 ( 3.89 1.99 ) 1.65 0.61
4 ( 3.28 3.38 ) 1.24 0.81
5 ( 1.83 3.19 ) 0.99 1.01
6 ( 2.06 1.81 ) 0.83 1.21
7 ( 3.20 2.48 ) 0.71 1.41
8 ( 2.05 2.92 ) 0.62 1.61
9 ( 2.73 2.00 ) 0.55 1.81
10 ( 2.33 2.97 ) 0.50 2.01
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k
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Figure 12: Fresnel Spiral Data.[2] The curvature of this Fresnel spiral grows linearly with time. Fitting a
line to this data yields the formula k�(t) = 0.2 · t, which predicts curvature at other points on the curve.

2All values in this and subsequent tables are rounded to two decimal places.
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7 Example: The Archemedean Spiral

As a final example, we analyze the Archemedean spiral using the same techniques as in the previous example.
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(a) The Archemedean Spiral.
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(b) Osculating Circles of Archemedean
Spiral Are Decreasing in Radius.
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(c) Osculating Circles of Fresnel Spiral
Are Also Decreasing in Radius.

Figure 13: Archemedean Spiral vs. Fresnel Spiral. Do the radii of the osculating circles decrease in
the same way?
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Radius of Osculating Circle is R = 1.94745
Curvature of Curve is 1/R = 0.513491

(a) (Point A, r� ≈ 1.94)

2 4 6
x

2

4

6

y

Radius of Osculating Circle is R = 1.59691
Curvature of Curve is 1/R = 0.62621

(b) (Point B, r� ≈ 1.60)
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Radius of Osculating Circle is R = 0.642785
Curvature of Curve is 1/R = 1.55573

(c) (Point C, r� ≈ 0.64)

Figure 14: Curvature Values at A, B, and C. Finding osculating circles at these three points and
computing their reciprocals gives A (κ� ≈ 0.51), B (κ� ≈ 0.63), and C (κ� ≈ 1.56).

t (x,y) r
⊙

k
⊙

1 ( 4.03 4.60 ) 1.90 0.53
3 ( 1.32 3.24 ) 1.70 0.59
5 ( 3.43 1.56 ) 1.50 0.67
7 ( 3.98 3.85 ) 1.30 0.77
9 ( 2.00 3.45 ) 1.10 0.91
11 ( 3.00 2.10 ) 0.89 1.12
13 ( 3.64 3.29 ) 0.69 1.44
15 ( 2.62 3.33 ) 0.49 2.04
17 ( 2.92 2.71 ) 0.29 3.48
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Figure 15: Archemedean Spiral Data. The curvature of this spiral grows non-linearly with time.
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8 A Visual Summary of 2D Curve Curvature

Recall from [P.] (pg. 4), “Digital Natives are used to receiving information really fast. They like to parallel
process and multi-task. They prefer their graphics before their text rather than the opposite”. For the
digital native, this page is a visual interactive summarizing the paper thus far.
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Radius of Osculating Circle is R = 1.59155
Curvature of Curve is 1/R = 0.628319

Again, flatter regions correspond to larger radii.  

...but move the point just a bit and the radius  
gets bigger where the Sine curve gets flatter. 

 

The Sine curve is the most curved it can be here…         

This is the Fresnel spiral.  Its curvature increases linearly with time on the curve. 
The osculating circle’s radius is about R=3/2 and the curvature is about  1/R=2/3. 
 

Osculating circles are the best circular 
approximation of a curve at a point. 

The radii of the osculating circles in this spiral are 
getting smaller, so the curvature gets larger. 

The vector T points in the direction of the curve. The vector N is perpendicular to T. 
 

radii: r=1, 3/2, 2, 5/2  
curvatures: 1, 2/3,1/2, 2/5 

The radius of this circle is R=1. 
The curve curvature is 1/R=1. 
 

    Osculating circles means “Kissing” circles. 

A Visual Exploration of 2D Curve Cuvature 
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9 Moving Into the Third Dimension

The osculating circle idea extends from 2D to 3D.  Example: ( Circular Helix ) 

A 3D Circular Helix... 
with an osculating circle 

It is the Fresnel sprial again, but 3D... 

The spiral gets tighter and tighter... 
 

...and bigger... 

The 3D circular helix is similar to the 2D circle; they are both of constant curvature.  

 See.  Except for perspective, the osculating circle is in fact circular. 

A 3D Circular Helix... 
with many osculating circles... 

...each osculating circle has the same radius 
because the the helix has constant curvature. 
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                The osculating circle idea extends from 2D to 3D. Example ( Fresnel Spiral )  

A Fresnel spiral but now 3D 

Except for perspective, the osculating circle is in fact circular.  

Extend the spiral further... 

...and the turns gets tighter and tighter... 
 

... so the curvature gets larger and larger. 

                   Each osculating circle is of a smaller radius, so the Fresnel spiral has non-constant curvature. 
                                Like the 2D Fresnel spiral, the 3D version’s curvature increases as a linear function in time. 
                                  

The osculating circles are still the best circular approximation at a point.   
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10 A Brief Excursion into Calculus

In this final section we would like to offer a more technical approach to curvature for those interested. Curve
curvature is often presented in multivariable calculus courses. Derivations and more lengthy discussions on
the formulas presented here can be found in most standard calculus texts. See, for example, [L.] (Chapter
12) and [S.] (Chapter 1).

Imagine we have a curve and let r(t) (a vector–valued function) denote our position on that curve at
some time t. Then r′(t) (the derivative) gives our velocity vector at time t. The length of the velocity vector,
|r′(t)|, gives our speed. If we assume that at no time are we stopped (i.e. |r′(t)| 6= 0), then we can normalize
our velocity vector and obtain T(t) = r′(t)/|r′(t)|, the unit tangent vector at time t. Notice that T(t) has
length |T(t)| = 1 and points in our direction of motion.

Repeating this computation yields a vector valued function T′(t) (the change in the unit tangent). As long
as the tangent changes (i.e. T′(t) 6= 0), we can normalize this derivative as well and get N(t) = T′(t)/|T′(t)|,
the unit normal vector at time t. It turns out that, as long as N(t) is defined, N(t) and T(t) are perpendicular
at every point in time t.

Recall that curvature was defined by analyzing the change in the tangent vector. The “official” formula
for curvature is κ(t) = |T′(t)|/|r′(t)|. This is a measure of how fast the unit tangent is changing relative to
our change in position along the curve. Notice that if we are traveling along a line, the tangent does not
change so again κ(t) = |T′(t)|/|r′(t)| = 0/|r′(t)| = 0. With a little more work, one can show (and often it is
shown in a third semester calculus course) that κ(t) = 1/r when our curve is a circle of radius r.

Finally, let us mention a special case of the curvature formula. When our curve is the graph of a function:

y = f(x), it is not difficult to show that the formula for curvature is κ(x) = |f ′′(x)|/
(
1 + (f ′(x))2

)3/2
.

Notice the appearance of the second derivative. This should not be too surprising given that the curvature
is measuring how the unit tangent changes, and the tangent itself is a measure of change. Curvature, more
or less, measures a change in the change.

As a final example, when our curve is the parabola y = x2, the above formula results in κ(x) = 2/(1 +
4x2)3/2. Notice that κ(x) is largest when the denominator is minimized at x = 0. Therefore, the maximal
curvature is κ(0) = 2 which occurs at the vertex of the parabola. This matches the curvature at point C in
Figure 8. Plugging in x ≈ 0.60 and x ≈ 1.77 we can see that the formula matches the curvature in Figure 8
at the points B and A as well.
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11 Exploration Questions

The six (6) exploration questions in this section could be assigned as homework problems or clasroom projects
after a careful reading of the previous sections. These questions can be found as typeset worksheets “Curve
Curvature Exploration Worksheets” with accompaning “Answer Key” online at 3

#1 Racetrack Exploration

Consider the following racetrack (with a very unsafe intersection).

A

B

C

D

The track from A to B is a 60 foot long line segment. The track from B to C is a part of a circle of
radius 30 feet and is 145 feet long. Then C to D is another 60 foot line segment followed by another
145 foot long circular portion with a 30 foot radius. Assuming that the circular portions of the track
smoothly transition into the line segment portions, sketch a graph of the curvature of this track as a
function of distance (in feet) from the starting line at A.

#2 Quartic Exploration

A plot of f(x) = 0.5x4 − 0.95x2 + 0.10x+ 0.7 is shown below, sketch the curvature function of f(x).
What can we say about the curvature for large x inputs?

−1.5 −1 −0.5 0.5 1 1.5

0.5

1

Note that the osculating circles at x ≈ −1.05, 0.03, and 1.01 are shown as dotted circles, and their
respective radii are approximately 0.228, 0.529, and 0.258.

3http://mathsci2.appstate.edu/~osbornejm/InteractiveDemos/ExplorationWorksheets.pdf

14

http://mathsci2.appstate.edu/~osbornejm/InteractiveDemos/ExplorationWorksheets.pdf


#3 Reverse Engineering Exploration

Sketch a curve which has a curvature function κ(s) as pictured below.

1

2

κ(s)

sπ/2 π 3π/2 2π

Note that we have graphed the curvature as a function of arc length, s. So, for example, κ(s) = 1 for
0 ≤ s ≤ π/2 means that the first piece of the curve, π/2 in length, has constant curvature κ = 1.
Hint: Think “6”.
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#4 Ellipse Exploration

Consider the ellipse
x2

9
+
y2

4
= 1 (which can be parameterized by

x(t) = 3 cos(t) and y(t) = 2 sin(t)). On the ellipse, the osculating circle
at (x, y) = (3, 0) (which corresponds with t = 0 in the given parame-
terization) has a radius of 4/3. The osculating circle at (x, y) = (0, 2)
(corresponding with t = π/2) has a radius of 9/2. Sketch the curva-
ture function for the ellipse. What are the maximum and minimum
curvatures of the ellipse?

(3, 0)
(0, 2)

#5 Elliptical Helix Exploration

Consider the elliptical helix parameterized by x(t) = 3 cos(t), y(t) = 2 sin(t), z(t) = t shown below.
On the elliptical helix, the osculating circles at (x, y, z) = (0, 2, π/2) (corresponding to t = π/2) and
(x, y, z) = (−3, 0, 3π) (corresponding to t = 3π) are shown below. These circles radii are 5 and 5/3
respectively.

t = 0

t = π/2

t = π

t = 3π/2

t = 2π

t = 5π/2

t = 3π

t = 7π/2

t = 4π

x y

z

t = π/2

t = 3π

x y

z

Sketch the curvature function for the elliptical helix. What are the maximum and minimum curvatures
of the helix? Hint: Consider exploring the 3D (circular) helix interactive demo before starting this
particular exploration a.

ahttps://mathsci2.appstate.edu/~osbornejm/InteractiveDemos.html

#6 Symbolic Exploration

When our curve is the graph of a function y = f(x), curvature is given by κ(x) =
|f ′′(x)|

(1 + (f ′(x))2)
3/2

.

a. Use this formula to find κ(x) when f(x) = 0.5x4−0.95x2 +0.1x+0.7 (the quartic from problem
#2). Graph κ(x) and compare with your previous sketch.

b. Consider a general polynomial, g(x) = anx
n + an−1x

n−1 + · · · + a1x + a0. As x → ±∞, we
know that the graph of g(x) flattens out and looks more and more like a straight line. Using
the formula for κ(x), show that lim

x→±∞
κ(x) = 0, confirming our graphical observation.

c. (For those with knowledge of cross products:) When a curve is parameterized by r(t) = x(t)i+

y(t)j + z(t)k, we have that κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3 . Using the parameterization r(x) = xi +

f(x)j + 0k for y = f(x), derive our special formula for curvature (stated above).

d. Using the above cross product formula and referring back to problems #4 and #5, compute
the curvature of the ellipse (parameterized by x(t) = 3 cos(t) and y(t) = 2 sin(t)) and elliptical
helix (parameterized by x(t) = 3 cos(t), y(t) = 2 sin(t), z(t) = t). Graph these formulas for κ(t)
and compare with your previous sketches.
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12 Conclusion and Invitation

Look back at what we have accomplished. We have investigated the sophisticated notion of curve curvature
– a topic commonly reserved until a third-semester study of calculus – and extended this idea from 2D to
3D curves. And we accomplished this though simple geometric investigations using lines, vectors, and one
simple ratio involving the radii of circles.

Along with investigating curve curvature, we hope that this paper provides an invitation to readers to
investigate more advanced mathematics in the future. As seen, mathematics can be investigated formally
or intuitively. A diversity of investigation techniques provides opportunities for many mathematical topics
to be considered by a broad audience. Hopefully, the geometric methods introduced in this article further
reveal how beautiful mathematics can be.
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