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Every ring with identity has an associated group of units. Fuchs’ problem
seeks to determine which group structures can appear as groups of units.
In this talk, we will discuss Fuchs’ problem in general and then focus on
groups of small orders and Dicyclic groups.



Background:

A ring R is an Abelian group under addition equipped with an
associative multiplication and obeys distributive laws.
We assume that all of our rings are rings with 1.

Closure: If a, b ∈ R, then a + b, ab ∈ R
Associativity: If a, b, c ∈ R, then (a + b) + c = a + (b + c)
and a(bc) = (ab)c .
Identity: There are 0, 1 ∈ R such that if a ∈ R, then
a + 0 = a = 0 + a and 1a = a = a1.
(Additive) Inverses: For all a ∈ R there is some −a ∈ R such
that a + (−a) = 0 = (−a) + a.
Commutativity (Addition): If a, b ∈ R, then a + b = b + a.
Distributivity: If a, b, c ∈ R, then a(b + c) = ab + ac and
(a + b)c = ac + bc.



Background:

Let R be a ring. We say u ∈ R is a unit if it has a multiplicative

inverse: there exists some b ∈ R such that uu−1 = 1 = u−1u .

Let R× = {u ∈ R | u is a unit in R} be the group of units.
This is a group under multiplication since. . .

Closure – A unit times a unit is a unit: (ab)−1 = b−1a−1.
Associativity – Multiplication is associative: a(bc) = (ab)c .
Identity – The multiplicative identity, 1, is a unit: 1−1 = 1.
Inverses – The inverse of a unit is a unit: (u−1)−1 = u.

Examples: Z× = {±1}, R[x ]× = R× = R6=0, (Rn×n)× = GLn(R),
Z×n = U(Zn) = U(n) = {k ∈ Zn | gcd(k , n) = 1}

U(10) = {1, 3, 7, 9}
where 1−1 = 1, 3−1 = 7, 7−1 = 3, and 9−1 = 9.
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Fuchs’ Problem:

Which group structures can appear as unit groups? (Fuchs ≈1960)

Given a group G , is there a ring R such that R× = G?

We say the G is realizable as a unit group if there is some ring R
such that R× = G .

Careful! This is not asking if G can appear among the units.
For example, let R be any commutative ring. We can form the
group ring, R[G ], and we have that G ⊆ R[G ]×.
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Fuchs’ Problem:

Which group structures can appear as unit groups?

Given a group G , is there a ring R such that R× = G?

We say the G is realizable as a unit group if there is some ring R
such that R× = G .

Examples: Notice {0}× = {0} and Z×2 = {1} both realize the

trivial group. Also, Z×3 = {1, 2} = 〈2〉 ∼= C2 realizes the cyclic
group of order 2. Likewise, Z×5 = {1, 2, 3, 4} = 〈2〉 ∼= C4,
Z×7 ∼= C6, and Z×8 = {1, 3, 5, 7} ∼= C2 × C2.

Finite Fields: There is a unique (up to isomorphism) field of order
q = pk where p is prime and k is a positive integer. Call such a
field Fq.
Any finite subgroup of the multiplicative group of a field is cyclic,
so F×q = Fq − {0} ∼= Cq−1. For example, F×4 ∼= C3, F×8 ∼= C7, and

F×9 ∼= C8.
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Characteristic of a Ring:

For convenience, we let Z0 = Z.

For any ring R, there exists some n ∈ Z≥0 such that R contains an
isomorphic copy of Zn called the prime subring of R.

char(R) = n is the characteristic of R

Examples: char(Z) = 0 and char(Zn) = n

Important Observation: Since 1 commutes with all R, so do
additive powers of 1. Thus

the prime subring of R lies in the center of R.

This implies that Z (R×) must contain a copy of Z×n .

Example: If Z (R×) = {1}, then either R = {0} or char(R) = 2
since |Z×n | > 1 for n > 2.
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We Cannot Realize Cyclic Order 5:

Theorem: Non-trivial groups of odd order can only be realized in
characteristic 2.
Proof #1: Z×n only has odd order for n = 1 (R = {0}) and n = 2.

Proof #2: If u 6= −u, then units come in pairs.

Example: We cannot realize C5.

Suppose R realizes C5 and say R× = 〈u〉 ∼= C5. Since |R×| = 5 is
odd, the characteristic of R must be 2 so that x = −x for all
x ∈ R. Notice that
(1 + u2 + u3)3 = u9 + 3u8 + 3u7 + 4u6 + 6u5 + 3u4 + 3u3 + 3u2 + 1
= u9 + u8 + u7 + u4 + u3 + u2 + 1 = 2u4 + 2u3 + 2u2 + 1 = 1.
Therefore, if a = 1 + u2 + u3, then a3 = 1 so that a−1 = a2. This
means a is a unit of order 1 or 3. But R× has order 5. Therefore,
a’s order is 1. Thus a = 1 so u2 + u3 = 0 so u2 = u3 so 1 = u
(contradiction).
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Group Rings:
Let R be a commutative ring (with 1 6= 0).

R[G ] = {r1g1 + · · ·+ r`g` | r1, . . . , r` ∈ R and g1, . . . , g` ∈ G}

Add coordinatewise and extend G ’s multiplication “linearly”.
Then R[G ] is the group ring of G with coefficients in R.

Example: Let D3 = 〈a, x | a3 = 1, x2 = 1, xa = a−1x〉
= {1, a, a2, x , ax , a2x} be the Dihedral group of order 6. The
group ring of D3 with coefficients in Z4 is a ring with 46 = 4096
elements.

Z4[D3] = {r1 + r2a + r3a
2 + r4x + r5ax + r6a

2x | r1, . . . , r6 ∈ Z4}

(2 + a + 3x) + (3 + 2a2 + x)

= (2 + 3) + a + 2a2 + (3 + 1)x = 1 + a + 2a2

(1 + 2a2 + x)(3a + 2ax) = (1 + 2a2 + x)3a + (1 + 2a2 + x)2ax=
3a + 6a3 + 3xa + 2ax + 4a3x + 2xax = 3a + 2 + 3a2x + 2ax + 0 + 2a2=
2 + 3a + 2a2 + 2ax + 3a2x
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Let R be a commutative ring (with 1 6= 0).
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Summary Basic Results:
Theorem: Let G be a group and n a non-negative integer.
Suppose G can be realized by a ring R of characteristic n.

There is an ideal I of Zn[G ] such that (Zn[G ]/I )× ∼= G .
Moreover, G can be realized by a finite ring if and only if G is
finite and realizable in a positive characteristic.

Let S be the subring of R generated by the units G . Then
S× = G .

If a ring realizes an Abelian group, one of its commutative
subrings realizes that group.

If G is cyclic, then there is some ideal I of Zn[x ] such that
(Zn[x ]/I )× ∼= G .

Units of the prime subring are central units:
Z×n ⊆ Z (R×) = Z (G ).

We have −1 is a unit of order 1 or 2. Moreover, −1 is a unit
of order 2 if and only if the characteristic of R is not 1 or 2.

Non-trivial realizable groups of odd order must be realized in
characteristic 2.



Using our Tools:

Example: Cyclic groups Cn where n = 5, 11, or 13 cannot be realized.

Suppose R realizes Cn. These groups have odd order so we must
work in characteristic 2.
Note that in Z2[x ] for n = 5, 11, and 13, the factorization of
xn − 1 = xn + 1 into irreducibles is (x + 1)(xn−1 + · · ·+ x + 1).
Thus can assume R is a quotient of

Z2[x ]/(xn−1) ∼= Z2[x ]/(x+1)×Z2[x ]/(xn−1+· · ·+x+1) ∼= F2×F2n−1

Thus R must be isomorphic to {0}, F2, F2n−1 , or F2 × F2n−1 .
But none of these realize Cn.
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What is known?

Cyclic Groups: The work of Gilmer (1963) and then Pearson &

Schneider (1970) settled which cyclic groups can and

cannot be realized.

Theorem: A finite cyclic group is realizable if its order is the
product of a set of pairwise relatively prime integers drawn from
the following list:

(a) pk − 1 where p is prime and k ≥ 1;

(b) (p − 1)pk where p > 2 and k ≥ 1;

(c) 2k where k is odd;

(d) 4k where any prime dividing k is congruent to 1 modulo 4.



What is known?

Symmetric and Alternating Groups: Davis &

Occhipinti (2014) gave a complete solution for which

symmetric (Sn) and alternating (An) groups are realizable.

The only realizable symmetric and alternating groups
are. . . S1,S2,S3, S4,A1,A2,A3,A4, and A8

Finite Simple Groups: In a different paper, Davis &

Occhipinti (2014) settled which finite simple groups can

be realized.

The only realizable finite simple groups are. . .
C2,Cp where p is a Mersenne prime,PSLn(F2) where n ≥ 3
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The only realizable symmetric and alternating groups
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be realized.

The only realizable finite simple groups are. . .
C2,Cp where p is a Mersenne prime,PSLn(F2) where n ≥ 3



What is known?

Dihedral Groups: Chebolu & Lockridge (2016) gave a complete

solution for which dihedral groups can be realized.

Recall Dn = 〈a, x | an = 1, x2 = 1, ax = xa−1〉 =
{1, a, . . . , an−1, x , ax , . . . , an−1x} is the dihedral group of order 2n.
The only realizable dihedral groups are. . .

D2,D4,D6, and Dk where k is odd.



Generalized Quaternion = Dicyclic Groups:

Let Dicn = 〈a, x | a2n = 1, an = x2, ax = xa−1〉
= {1, a, . . . , a2n−1, x , ax , . . . , a2n−1x}

be the dicyclic group of order 4n.

These groups can be constructed inside the quaternion
algebra letting a be a primitive 2n-th root of unity and x = j .

Dic1 ∼= C4 is the only Abelian dicyclic group.

Dic2 ∼= Q = {±1,±i ,±j ,±k} is the quaternion group of
order 8.

〈a〉 = {1, a, . . . , a2n−1} has order 2n.

The elements x , ax , . . . , a2n−1x all have order 4.

an = x2 is the only element of order 2.

Z (Dicn) = {1, an} when n > 1.
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Generalized Quaternion = Dicyclic Groups:

Let n > 1. Then since |Z (Dicn)| = 2, if R realizes Dicn, we have

char(R) = 0, 2, 3, 4, or 6.

Note that Dic1 = Z (Dic1) ∼= C4 allows for more possibilities:

char(R) = 0, 2, 3, 4, 5, 6, or 10.
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Generalized Quaternion = Dicyclic Groups:

Proposition: Dicyclic groups cannot be realized in char. 3 or 6.

Proof: Suppose R realizes Dicn. If R’s characteristic is not 2, then
1 6= −1 so −1 has order 2. Thus an = x2 = −1.
Suppose char(R) = 3. Then
(1+x)4= 1+4x +6x2+4x3+x4= 1+x +0+(−1)x +1 = 2 = −1.
So (1 + x)8 = 1 and thus 1 + x is a unit of order 8.Therefore,
1 + x = ak for some k since x , ax , . . . , a2n−1x have order 4. Then
a(1 + x) = ak+1 = (1 + x)a so a + ax = a + xa and so ax = xa.
But xa−1 = ax = xa so that a−1 = a.Thus a2 = 1 and so
n = 1.But Dic1 ∼= C4 does not have an element of order 8!
(contradiction)
Suppose char(R) = 6. Then
(2 + x)4 = 24 + 4 · 23x + 6 · 22x2 + 4 · 2x3 + x4 =
4 + 2x + 2(−1)x + 1 = 5 = −1. Thus (2 + x)8 = 1 and thus 2 + x
is a unit of order 8. Again, we must have 2 + x = ak for some k
and again a(2 + x) = ak+1 = (2 + x)a implies ax = xa. This leads
to the same contradiction. �
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Generalized Quaternion = Dicyclic Groups:

Proposition: Dicn can be realized in char. 2 or 4 if and only if
n = 1 or n = 2.

Proof: This is similar in flavor to the characteristic 3 and 6 proof,
but it is a bit more involved. �

Example: Z[−1, j ]× ∼= C4
∼= Dic1, Z[i , j ]× ∼= Q ∼= Dic2, and. . .

Z[eπi/3, j ]× ∼= Dic3.

Proposition: We have a complete picture for small Dicyclic
groups. . .

Dic1 can only be realized in char. 0, 2, 4, 5, and 10.

Dic2 can only be realized in char. 0, 2, and 4.

Dic3 can only be realized in char. 0.
Dic3 cannot be realized by a finite ring!
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Some Partial Results:

Sadly, Z[eπi/(2n)]× is infinite for n > 3, so we cannot use
Z[eπi/(2n), j ] to realize Dicn for n > 3.

Proposition: If every prime factor of n is congruent to 1 modulo 4
(i.e., Z×n has an element of order 4 that squares to be −1), then
we can realize Dicn in characteristic 0.

Let R = Zn oZ[i ] (= Zn ×Z[i ] as a group under addition). Define
f (x + yi) = x + yτ and g(x + yi) = x − yτ where τ2 = −1 in Zn.
We multiply as follows: (a, b)(x , y) = (af (y) + xg(b), by). Then
R = Zn o Z[i ] realizes Dicn (in characteristic 0).

Proposition: If G is realizable in characteristic n, then so is every
maximal Abelian subgroup of G .

Corollary: If we can realize Dicn in characteristic 0, then we must
be able to realize C2n as well. As a consequence, for example,
Dic4n cannot be realized for any n ≥ 1.
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Groups of Small Order:
Order Isomorphism Classes

1,2,3 C1
∼= Z×

2 , C2
∼= Z×

3 , C3
∼= F×

4

4 C4
∼= Z×

5 and C2 × C2
∼= (Z3 × Z3)×

5 C5 is not realizable

6 C6
∼= Z×

7 and S3 ∼= (Z2×2
2 )×

7 C7
∼= F×

8

8
C8
∼= F×

9 , C2 × C4
∼= (Z3 × Z5)×, C2 × C2 × C2

∼= (Z3 × Z3 × Z3)×,

D4
∼= U3(Z2)×, and Q ∼= (Z2[Dic2]/(1 + x + a + ax))×

9 C9 is not realizable and C3 × C3
∼= (F4 × F4)×

10 C10
∼= Z×

11 and D5 is not realizable

11 C11 is not realizable

12
C12
∼= Z×

13, C2 × C6
∼= (Z3 × Z7)×, D6

∼= U2(Z3)×,

A4
∼= (O/2O)×, and Dic3 ∼= (Z[eπi/3, j ])×

13 C13 is not realizable

14 C14
∼= (Z3 × F8)× and D7 is not realizable

15 C15
∼= F×

16
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Thank you for listening!
Questions?


