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Abstract. Fuchs’ problem asks which groups can be realized as unit groups. In this paper, we solve Fuchs’
problem for dicyclic groups realized by finite rings. We also survey known results and give complete lists of

realizable groups considering groups up to order 15. For groups that can be realized, we provide a ring in
every viable characteristic. Consequently, we have that the dicyclic group of order 12 is the smallest group

that can be realized but not by a finite ring.
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1. Introduction and General Background

Over 60 years ago, László Fuchs asked which Abelian groups can appear as groups of units of a ring ([6]).
Fuchs’ problem now refers to the classification of which groups (Abelian or not) are unit groups of rings.
While this problem has been resolved for many classes of groups, for example cyclic groups ([8] and [9]),
dihedral groups ([2]), alternating and symmetric groups ([3]), and finite simple groups ([4]), Fuchs’ original
question about Abelian groups is still open.

In this paper, we answer Fuchs’ question for groups up to order 15. In addition, we explore the class
of dicyclic groups where we prove that dicyclic groups of order 12 or larger cannot be groups of units of a
finite ring. We also give partial results for and show certain dicyclic groups can be realized in characteristic
0 while others cannot. An interesting consequence of this work is that the dicyclic group of order 12 is the
smallest group to appear as a group of units of an infinite ring but not as the group of units of a finite ring.

To begin, we must establish some terminology and notation. All of our rings possess a multiplicative
identity and we let R× denote the group of units of a ring R. For convenience, we occasionally let Z0 denote
the integers, Z, and we identify the prime subring of a ring of characteristic n with Zn. In addition, Fq
denotes the finite field of order q, Cn denotes the cyclic group of order n, D2n denotes the dihedral group of
order 2n, and Dic4n denotes the dicyclic group of order 4n.

Definition 1.1. A group is realizable if it is the group of units of some ring. Moreover, a group is
realizable in characteristic n if it is the group of units of a ring of characteristic n.

Let G be a group and R a commutative ring. Recall that

R[G] =

{
n∑
i=1

rigi

∣∣∣∣∣ n ∈ Z≥0 and for all i = 1, . . . , n we have ri ∈ R and gi ∈ G

}
is the group ring of G with coefficients in R. These elements are added coefficientwise. If r, s ∈ R and
g, h ∈ G, we have (rg)(sh) = rs · gh and then extend linearly for general elements of R[G]. Notice that
G ⊆ (R[G])×. Therefore, any group appears among the units of some ring of arbitrary characteristic. Fuchs’
problem is much more difficult. He asks if we can find a ring R such that G = R× precisely. That is, we
have equality and not just containment.

Let us gather some basic facts.

Proposition 1.2. Let G be a group and n a non-negative integer. Suppose that G is realized by a ring R of
characteristic n.

(a) There is an ideal I of Zn[G] such that (Zn[G]/I)× ∼= G. Moreover, G can be realized by a finite ring if
and only if G is finite and realizable in a positive characteristic.

(b) Let S be the subring of R generated by the units G. Then S× = G.
(c) If a ring realizes an Abelian group, one of its commutative subrings realizes that group.
(d) If G is cyclic, then there is some ideal I of Zn[x] such that (Zn[x]/I)× ∼= G.

1



2 JOSHUA A. CARR, WILLIAM J. COOK, AND LINDSEY G. WISE

(e) Units of the prime subring are central units: Z×n ⊆ Z(R×) = Z(G).
(f) We have −1 is a unit of order 1 or 2. Moreover, −1 is a unit of order 2 if and only if the characteristic

of R is not 1 or 2.
(g) Non-trivial realizable groups of odd order must be realized in characteristic 2.

Proof: Suppose R× = G where R is a ring of characteristic n. The identity map on G extends to a ring
homomorphism ϕ : Zn[G]→ R. Thus by the first isomorphism theorem Zn[G]/ker(ϕ) ∼= im(ϕ) ⊆ R. Notice
that S = im(ϕ) is precisely the subring of R generated by the unit group G. Moreover, since inverses of
units are units and S contains all of G = R×, we have that S× = R×.

Next, if G = R× is infinite (so G ⊆ R) or the characteristic of our ring is n = 0 (so Z ⊆ R), then R must
be an infinite ring. On the other hand, if G is finite and can be realized in positive characteristic n, then it
can be realized by Zn[G]/I for some ideal I. This ring is finite since Zn[G] is finite. This establishes parts
(a) and (b). Part (c) now follows from part (b) since a set of commuting elements generates a commutative
subring.

Part (d) is much like part (a). Suppose G = 〈g〉. Then one can extend x 7→ g to a homomorphism,
ϕ : Zn[x]→ R. The result now follows from the isomorphism theorem.

For part (e), we note that units of the prime subring Zn are units of R, and the prime subring Zn is
central (i.e., Zn ⊆ Z(R)). Thus Z×n ⊆ Z(R×) = Z(G).

For part (f), we note that (−1)2 = 1, so −1 is a unit of order 1 or 2. Notice that −1 has order 1 if and
only if −1 = 1 (i.e., 2 = 0). This is the case if and only if the characteristic is either 1 or 2. Finally, part (g)
follows immediately from (f) since a group of odd order cannot possess an element of even order. �

We say that A is a maximal Abelian subgroup of a group G if A is an Abelian subgroup of G and given
any other Abelian subgroup B of G such that A ⊆ B, we have A = B. In particular, we do not require A
to be a proper subgroup. We record the following helpful fact:

Proposition 1.3. Let R be a ring and let A be a maximal Abelian subgroup of R×. Then A can be realized
by a subring of R. Therefore, if R× is realizable in characteristic n, then every maximal Abelian subgroup
of R× is also realizable in characteristic n.

Proof: Let A be a maximal Abelian subgroup of R× where char(R) = n. Consider the subring of R
generated by A, namely S = spanZn

(A) (where if char(R) = 0, then Zn = Z). Then S is commutative, S×

is Abelian, and A ⊆ S× ⊆ R×. Since A is a maximal Abelian subgroup, A = S×. �

While the above propositions help us limit how groups can be realized, the following construction is helps
us build some realizations:

Remark 1.4. Recall that if we have two rings R and S along with the ring homomorphisms f, g : S → Z(R)
where Z(R) is the center of R, then we can construct a semidirect product ring R o S with underlying set
R × S. The additive structure is just that of the direct product of R and S, and we multiply as follows:
(a, b)(x, y) = (af(y) + xg(b), by) for a, x ∈ R and b, y ∈ S. It is a routine exercise to show that this gives
R o S a ring structure with unit 1 = (0, 1). Moreover, (x, y) is a unit of R o S if and only if y is a unit of
S. In fact, (x, y)−1 = (−xg(y−1)f(y−1), y−1). Thus (Ro S)× = R× (S×) = {(x, y) | x ∈ R and y ∈ S×} is
the set of units of our semidirect product.

2. Groups of Odd Order

The fact that −1 is a unit of order 2 greatly limits our options for realizing groups of odd order. In
particular, the final part of Proposition 1.2 states that a non-trivial group of odd order cannot be realized
except in characteristic 2. This implies that an odd order group can be realized if and only if it can be
realized by a finite ring (in particular, a quotient of its group ring with coefficients in Z2).

Let us dismiss the trivial group. Note that the trivial ring is the only ring of characteristic 1, and so
the trivial group is the only group realizable in characteristic 1. We can also realize the trivial group in
characteristic 2 using Z2 (the only other characteristic available). In fact, the smallest rings to realize the
trivial group in characteristics 1 and 2 are {0} and Z2 (= F2) respectively.
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All odd ordered groups of orders 15 or less are Abelian, and other than Z3 × Z3 they are cyclic. Since
[8] solved Fuchs’ problem for cyclic groups realized by finite rings, our groups of odd order, except Z3 × Z3,
could be handled by his result. Instead, we provide a direct proof to demonstrate some tools at hand.

Proposition 2.1. The cyclic groups C5, C9, C11, and C13 cannot be realized.

Proof: Let Cn = 〈s〉 be a cyclic group of order n > 1. Suppose that we can realize Cn by a ring R. By
Proposition 1.2 parts (g) and (d), we may assume that we have a surjective homomorphism ϕ : Z2[x] → R
such that ϕ(x) = s. Since sn = 1 (so 0 = sn − 1 = sn + 1 in characteristic 2), we have that ϕ(xn + 1) = 0.
Therefore, this morphism can be factored through Z2[x]/(xn + 1). In other words, R is isomorphic to a
quotient of Z2[x]/(xn + 1).

When n = 5, 11, or 13, the polynomial xn+1 factors in Z2[x] as follows: xn+1 = (x+1)(xn−1+ · · ·+x2+
x+1). Therefore, R is isomorphic to a quotient of Z2[x]/(xn+1) = Z2[x]/(x+1)×Z2[x]/(xn−1+· · ·+x+1) ∼=
F21 × F2n−1 . Recalling that ideals of product rings are products of ideals and that fields have no non-trivial
proper quotients, we must have that R is isomorphic with either {0}, F2, F2n−1 , or F21 ×F2n−1 . These yield
possible unit groups of C1, C1, C2n−1−1, and C2n−1−1 respectively. But 1 and 2n−1− 1 do not equal n when
n = 5, 11, or 13. Thus C5, C11, and C13 cannot be realized.

Using the same line of reasoning, we factor x9+1 in Z2[x] as follows: x9+1 = (x+1)(x2+x+1)(x6+x3+1).
Therefore, if C9 can be realized, our ring must be isomorphic to a quotient of F2 × F22 × F26 . So we would
need to be able to express C9 as a product built out of the groups C1, C3, and C63. This is impossible, so
C9 cannot be realized. �

The rest of the groups of odd order (up to order 15) can be realized as unit groups of finite fields (or
products of such). The following table gives the smallest possible realization in all possible characteristics c
for each group of odd order less than or equal to 15:

C1 C3 C5 C7 C9 C3 × C3 C11 C13 C15

c = 1: {0} c = 2: F2 c = 2: F4 None c = 2: F8 None c = 2: F4 × F4 None None c = 2: F16

3. Cyclic Groups of Even Order

In this section we consider cyclic groups of even order less than 15. We recall that Fuchs’ problem is
completely solved for all cyclic groups. In particular, Gilmer showed which cyclic groups can be realized by
a finite ring and then Pearson and Schneider took care of the remaining characteristic 0 case ([8] and [9]).
These results are recovered and extended in [5] (we quote their Corollary 5.17):

Theorem 3.1. ([9]) A finite cyclic group is realizable if its order is the product of a set of pairwise relatively
prime integers drawn from the following list:

(a) pk − 1 where p is prime and k ≥ 1;
(b) (p− 1)pk where p > 2 and k ≥ 1;
(c) 2k where k is odd;
(d) 4k where any prime dividing k is congruent to 1 modulo 4.

We will not need this theorem here, but we do need Gilmer’s main result. Instead of reproving it, we
merely recall Gilmer’s theorem. This will allow us to determine which cyclic groups of even order can be
realized in characteristic n 6= 0. Most of these cyclic groups of even order can be realized in characteristic 0
with the exception of C8, so instead of relying on Pearson and Schneider’s result, we will provide realizations
and in the case of C8 we provide a direct proof that it cannot be realized in characteristic 0.

Theorem 3.2. ([8]) (I) Let R be a finite commutative ring. Then R = R1×R2×· · ·×Rm where R1, . . . , Rm
are primary rings. Moreover, R× is cyclic if and only if R×i is cyclic for each i = 1, . . . ,m and the orders
of R×i (i = 1, . . . ,m) are relatively prime.

(II) Let R be a (non-trivial) finite primary ring with cyclic group of units. Then R is isomorphic to one
of the following:1

• Fpk where p is prime and k > 0. Note: char(Fpk) = p and (Fpk)× ∼= Cpk−1.

1Appendix B includes a verification that Zεp, Zδ2, and Gil do in fact have these unit groups.
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• Zpk where p is an odd prime and k > 1 or pk = 22 = 4. Note: char(Zpk) = pk and (Zpk)× ∼=
Cpk−pk−1 .

• Zεp = Zp[x]/(x2) where p is prime. Note: char(Zεp) = p and (Zεp)× ∼= Cp2−p.

• Zδ2 = Z2[x]/(x3). Note: char(Zδ2) = 2 and (Zδ2)× ∼= C4.
• Gil = Z4[x]/(2x, x2 + 2). Note: char(Gil) = 4 and Gil× ∼= C4.

(III) If Cn is realizable, it can be realized by a finite commutative ring and thus can be realized by a direct
product of rings drawn from the above list.

With Gilmer’s theorem in hand, we need to consider which direct products of the rings above give us a
cyclic group of order 15 or less. First, finite fields give us (Z2)× ∼= C1, (F4)× ∼= C3, (F8)× ∼= C7, (F16)× ∼= C15,
(Z3)× ∼= C2, (F9)× ∼= C8, (Z5)× ∼= C4, (Z7)× ∼= C6, (Z11)× ∼= C10, and (Z13)× ∼= C12. Next, integers modulo
a prime power order give us (Z4)× ∼= C2 and (Z9)× ∼= C6. Next, we have (Zε2)× ∼= C2 and (Zε3)× ∼= C6.
Finally, (Zδ2)× ∼= C4 and Gil× ∼= C4. Everything else yields cyclic groups with more than 15 elements.

With our positive characteristic building blocks in place, we then turn to characteristic 0. In [9], Pearson
and Schneider extend Gilmer’s result covering all characteristics. We already know that groups of odd order
cannot be realized in characteristic 0, and it turns out that the only other cyclic group of order less than
15 that cannot be realized in characteristic 0 is C8. Instead of quoting Pearson and Schneider’s results, we
offer a direct proof to show C8 cannot be realized in characteristic 0.

Lemma 3.3. Suppose a ring R realizes R× = C8. Then char(R) must divide 48. In particular, char(R) 6= 0.

Proof: Suppose char(R) does not divide 48. Thus char(R) 6= 2 and so −1 must be our unique unit of order
2. Let ω ∈ R× be some generator of R× = C8. Then ω4 = −1 since ω4 has order 2. Next, notice that
(ω2 +ω+ 1)(ω6 +ω3 + 1) = ω8 +ω7 + · · ·+ 1 = 1−ω3−ω2−ω− 1 +ω3 +ω2 +ω+ 1 = 1. Thus ω2 +ω+ 1
is a unit in R and so (ω2 + ω + 1)8 = 1. Running the extended Euclidean algorithm on (x2 + x + 1)8 − 1
and x4 + 1, one finds that there exist f, g ∈ Z[x] such that f(x)((x2 + x + 1)8 − 1) + g(x)(x4 + 1) = 48.
Therefore, 48 = f(ω)((ω2 + ω + 1)8 − 1) + g(ω)(ω4 + 1) = f(ω) · 0 + g(ω) · 0 = 0. This is impossible since
the characteristic of R does not divide 48. �

The other cyclic groups of even orders less than 15 can be realized in characteristic 0 if we form direct
products of previously considered rings with the integers, the Gaussian integers, and PS5 = Z[x]/(5x, x2)
(i.e., Ring A with m = 5 from [9]). In particular, we need PS5 to realize C10 in characteristic 0.2

After taking direct products of our list coming from Gilmer with these characteristic 0 rings, we get the
following table of realizations of cyclic groups of even orders less than 15 in all viable characteristics:

C2 C4 C6

c = 0: Z c = 4: Z4 c = 0: Z[i] c = 5: Z5 c = 0: F4 × Z c = 4: Z4 × F4 c = 9: Z9

c = 2: Zε2 c = 6: Z6 c = 2: Zδ2 c = 10: Z10 c = 2: Zε2 × F4 c = 6: Z3 × F4 c = 14: Z14

c = 3: Z3 c = 4: Gil c = 3: Zε3 c = 7: Z7 c = 18: Z18

C8 C10 C12 C14

c = 3: F9 c = 0: PS5 c = 0: F4 × Z[i] c = 10: F4 × Z5 c = 0: F8 × Z c = 4: Z4 × F8

c = 6: Z2 × F9 c = 11: Z11 c = 2: F4 × Zδ2 c = 13: Z13 c = 2: Zε2 × F8 c = 6: Z3 × F8

c = 22: Z22 c = 4: F4 ×Gil c = 26: Z26

4. Non-Cyclic Abelian Groups of Even Orders

There are four non-cyclic Abelian groups of even order less than 15. Each of these can be realized, so our
only work is to determine which characteristics are viable. In each case we recall that if G = Z(G) is realized
by R in characteristic c, then Z×c ⊆ G (where we continue to use the convention that Z0 = Z). From this
consideration, we find if char(R) = c, then:

2Appendix B has a verification that for any positive odd integer (PSm)× = (Z[x]/(mx, x2))× = C2m.
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For C2 × C2, c = 0, 2, 3, 4, 6, 8, and 12 may be possible.

For C2 × C2 × C2, c = 0, 2, 3, 4, 6, 8, 12, and 24 may be possible.

For C2 × C4, c = 0, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, and 30 may be possible.

For C2 × C6, c = 0, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 28, 36, and 42 may be possible.
As we will see below, nearly every one of these possible characteristics can be realized. Only three cases

need to be ruled out. We show that C2 × C4 cannot be realized in characteristics 3 and 5, and C2 × C6

cannot be realized in characteristic 7.

Lemma 4.1. Suppose R realizes C2 × C4 in characteristic c. Then char(R) 6= 3.

Proof: Suppose char(R) = 3 and let C2 × C4 = 〈y〉 × 〈x〉 = {1, y, x, xy, x2, x2y, x3, x3y} so that y, x2, x2y
have order 2 and x, x3, xy, x3y have order 4. Note that 2 = −1 is a unit of order 2. Thus, one of the following
must hold: y = −1, x2 = −1, or x2y = −1.

If x2 = −1, then (1 +x)4 = 1 + 4x+ 6x2 + 4x3 +x4 = 1 +x+ 0 +x(−1) + 1 = 2 = −1 and so (1 +x)8 = 1.
Thus 1 + x is a unit of order 8 which is impossible.

Next, if y = −1, then without loss of generality we can assume our ring is a quotient of Z3[x]/(x4−1) (i.e.,
we send x to x and −1 to y). Note that x4 − 1 = (x+ 1)(x− 1)(x2 + 1) over Z3[x]. Thus Z3[x]/(x4 − 1) ∼=
Z3 × Z3 × F9. A quotient of this ring must be isomorphic to a direct product built from Z3, Z3, and F9.
Such a quotient can only realize C1, C2, C2×C2, C2×C8, C8, or C2×C2×C8. Therefore, no such quotient
ring realizes C2 × C4.

Finally, if x2y = −1, we can just let z = x2y = −1 so C2 × C4 = {1, x2z, x, x3z, x2, z, x3, xz} and our
previous case applies. Thus neither x2 = −1 nor y = −1 nor x2y = −1 is possible. We have reached a
contradiction. �

Lemma 4.2. Suppose R realizes C2 × C4 in characteristic c. Then char(R) 6= 5.

Proof: Let C2 × C4 = 〈y〉 × 〈x〉 be realized by some ring R of characteristic 5. Without loss of generality,
assume that R is generated by its units. Our prime subring is Z5 which contains units 1, 2, 4, and 3. These
can be identified with 1, x, x2, and x3 respectively. The remaining units are then y, 2y, 4y, and 3y. Sending
2 to x and y to y, we get a homomorphism from Z5[y]/(y2 − 1) to R. This homomorphism is onto since
R is generated by its units. Noting that y2 − 1 = (y − 1)(y + 1), we have R is isomorphic to a quotient
of Z5[y]/(y2 − 1) ∼= Z5 × Z5. A quotient of this ring must be isomorphic to {0}, Z5, or Z5 × Z5 with unit
group C1, C4, or C4 × C4 respectively. Therefore, no such quotient ring realizes C2 × C4. We have reached
a contradiction. �

Lemma 4.3. Suppose R realizes C2 × C6 in characteristic c. Then char(R) 6= 7.

Proof: Let C2×C6 = 〈y〉×〈x〉 be realized by some ring R of characteristic 7. Without loss of generality, as-
sume that R is generated by its units. Our prime subring is Z7 which contains units 1, 3, 2, 6, 4, and 5. These
can be identified with 1, x, x2, x3, x4, and x5 respectively. The remaining units are then y, 3y, 2y, 6y, 4y, and
5y. Sending 3 to x and y to y, we get a homomorphism from Z7[y]/(y2 − 1) to R. This homomorphism is
onto since R is generated by its units. Noting that y2 − 1 = (y − 1)(y + 1), we have R is isomorphic to a
quotient of Z7[y]/(y2 − 1) ∼= Z7 × Z7. A quotient of this ring must be isomorphic to {0}, Z7, or Z7 × Z7

with unit group C1, C6, or C6×C6 respectively. Therefore, no such quotient ring realizes C2×C6. We have
reached a contradiction. �

Recall that Zε2 = Z2[x]/(x2), Zδ2 = Z2[x]/(x3), Gil = Z4[x]/(2x, x2 + 2), and define M = Z8[x]/(x2 +
1, 2x− 2).3 Therefore, we get the following table of realizations of non-cyclic Abelian groups of even orders
less than 15 in all viable characteristics:

3Appendix B includes a verification that (Zε2)× = C2, (Zδ2)× = C4, (Gil)× = C4, and M× = C2 × C4.
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C2 × C2 C2 × C2 × C2

c = 0: Z× Z c = 6: Z3 × Z6 c = 0: Z× Z× Z c = 6: Z3 × Z3 × Z6

c = 2: Zε2 × Zε2 c = 8: Z8 c = 2: Zε2 × Zε2 × Zε2 c = 8: Zε2 × Z8

c = 3: Z3 × Z3 c = 12: Z12 c = 3: Z3 × Z3 × Z3 c = 12: Zε2 × Z12

c = 4: Z4 × Z4 c = 4: Z4 × Z4 × Z4 c = 24: Z24

C2 × C4 C2 × C6

c = 0: Z× Z[i] c = 12: Z3 ×Gil c = 0: Z× Z× F4 c = 8: Z8 × F4 c = 21: Z21

c = 2: Zε2 × Zδ2 c = 15: Z15 c = 2: Zε2 × Zε2 × F4 c = 9: Z3 × Z9 c = 28: Z28

c = 4: Zε2 ×Gil c = 16: Z16 c = 3: Z3 × Zε3 c = 12: F4 × Z12 c = 36: Z36

c = 6: Z6 × Zδ2 c = 20: Z20 c = 4: Z4 × Z4 × F4 c = 14: Zε2 × Z14 c = 42: Z42

c = 8: M c = 30: Z30 c = 6: Z6 × Z3 × F4 c = 18: Z3 × Z18

c = 10: Zε2 × Z5

5. Dihedral Groups

For any positive integer n, the dihedral group of order 2n can be presented by D2n = 〈r, s | rn = 1, s2 =
1, rs = sr−1〉. Of course, D2

∼= C2 and D4
∼= C2 × C2 (the Klein 4-group). All other dihedral groups are

non-Abelian. Chebolu and Lockridge in [2] give a self-contained complete solution to Fuchs’ problem. This
paper inspired much of our work done in Section 7 on dicyclic groups. Instead of reproving their result, we
merely relay their conclusion.

Theorem 5.1. Suppose R realizes R× = D2n in characteristic c. If n = 1, then c = 0, 2, 3, 4, or 6. If n = 2,
then c = 0, 2, 3, 4, 6, 8, or 12. If n = 3, then c = 2. If n = 4, then c = 2 or 4. If n = 6, then c = 2, 3, 4,
or 6. Finally, if n = 4k where k is an odd positive integer, then c = 0. All other dihedral groups cannot be
realized.

The following table gives examples of realizations of dihedral groups in the only viable characteristics:

D2 D4 D6

c = 0: Z c = 4: Z4 c = 0: Z× Z c = 6: Z3 × Z6 c = 2: (Z2)2×2

c = 2: Zε2 c = 6: Z6 c = 2: Zε2 × Zε2 c = 8: Z8

c = 3: Z3 c = 3: Z3 × Z3 c = 12: Z12

c = 4: Z4 × Z4

D8 D12 D4k (k > 3 & odd)

c = 2: U3(Z2) c = 0: Z3 o Z[C2] c = 4: Z4 × (Z2)2×2 c = 0: Zk o Z[C2]

c = 4: EndZ(C4 × C2) c = 2: Zε2 × (Z2)2×2 c = 6: Z2 × U2(Z3)

c = 3: U2(Z3)

In the above table, Zε2 = Z[x]/(x2) as defined before. We denote the ring of 2 × 2 matrices over Z2 by
(Z2)2×2, the ring of 3×3 upper triangular matrices with entries in Z2 by U3(Z2), and the ring of 2×2 upper
triangular matrices over Z3 by U2(Z3). Also, recall that EndZ(C4 × C2) is the ring of endomorphisms of
the group C4 × C2. We must explain what is meant by the semidirect product of Zk and the group algebra
Z[C2].

Example 5.2. Recall the semidirect product ring construction of Remark 1.4. Let k be an odd positive
integer, R = Zk, and S = Z[C2] = {a + bx | a, b ∈ Z} where x2 = 1 (i.e., the group algebra of C2 over Z).
Next, let f, g : Z[C2]→ Zk be defined by f(a+ bx) = a+ b and g(a+ bx) = a− b respectively (i.e., f and g
are evaluations at x = 1 and x = −1 respectively). Then it is easy to show that if r = (1, 1) and s = (0, x),
then r2k = 1, s2 = 1, (rs)2 = 1, and finally (Zk o Z[C2])× = {1, r, . . . , r2k−1, s, rs, . . . , r2k−1s} = D4k.

6. Alternating and Symmetric Groups

We have already seen that the center of a group constrains the characteristics available for realization.
Since large enough alternating and symmetric groups have trivial centers, it should not be surprising that
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most cannot be realized at all. In [3], Davis and Occhipinti completely and concisely solve Fuchs’ problem
for alternating and symmetric groups. Again, instead of reproving their results, we merely relay their
conclusions.

Theorem 6.1. The only realizable (finite) symmetric and alternating groups are S1, S2, S3, S4, A1, A2,
A3, A4, and A8.

Note that S1 = A1 = A2 are just the trivial group, S2
∼= C2, A3

∼= C3, and S3
∼= D6 all of which have been

discussed before. The remaining groups have trivial centers. Thus they can only be realized in characteristic
2. The following table gives examples of realizations of the symmetric and alternating groups in the only
viable characteristics:

S1 S2 S3 S4

c = 1: {0} c = 0: Z c = 3: Z3 c = 6: Z6 c = 2: (Z2)2×2 c = 2: Z2[S4]/J

c = 2: Z2 c = 2: Zε2 c = 4: Z4

A1
∼= A2 A3 A4 A8

c = 1: {0} c = 2: Z2 c = 2: F4 c = 2: O/2O c = 2: (Z2)4×4

As before, Zε2 = Z[x]/(x2). We let (Z2)4×4 denote the ring of 4 × 4 matrices over Z2. To realize S4, Davis
and Occhipinti use a quotient of the group algebra of S4 over Z2. Specifically, Z2[S4]/J realizes S4 if we let
J = (σ, τ) where σ = (1)+(24)+(12)(34)+(1234) and τ = (1)+(12)+(23)+(13)+(123)+(132). They then
realize A4 using a quotient of a subring of the quaternion algebra H. In particular, we let O = spanZ{1, i, j, ω}
where ω =

1

2
(1 + i + j + k) and quotient by 2O. Note that elements of O are known as Hurwitz quaternions.

7. Dicyclic Groups

In our survery of Fuchs’ problem for groups of order at most 15, we have considered all but the dicyclic
group of order 8 (also known as the quaternion group of order 8) and the dicyclic group of order 12. In
this section we explore the family of dicyclic groups following and extending work found in the last author’s
Senior Honors Thesis [10] which in turn was inspired by work in the first author’s Master’s Thesis [1].

For any positive integer n, the dicyclic group of order 4n can be presented by Dic4n = 〈r, s | r2n = 1, s2 =
rn, rs = sr−1〉. When n is a power of 2, Dic4n = Q4n (the generalized quaternion group of order 4n). We
note that some authors use names dicyclic group and generalized quaternion group synonymously even when
n is not a power of 2. The smallest dicyclic groups are Dic4 ∼= C4 (the only Abelian dicyclic group) and
Dic8 ∼= Q = {±1,±i,±j,±k} (i.e., the group of quaternions of order 8).

One should notice the similarities between the presentations of dicyclic and dihedral groups. While dicyclic
and dihedral groups are quite different, they share enough features that many techniques and ideas found in
[2] were successfully adapted and used here.

We begin by noting Dic4n = {1, r, . . . , r2n−1, s, sr, . . . , sr2n−1} and that one obtains an isomorphism
between Dic4n and a subgroup of the unit group of the quaternion algebra H via the map extending r 7→
exp(2πi/2n) (a primitive 2n-th root of unity) and s 7→ j.

The final relation, rs = sr−1 implies rsr = s and so sr = r−1s as well. Notice that (rks)2 = rksrks =
rkr−ks2 = rn 6= 1, but (rks)4 = (rn)2 = 1. Therefore, 〈r〉 is a cyclic subgroup of order 2n and each of the
remaining elements, s, rs, . . . , r2n−1s, have order 4. Of course, Dic4 = Z(Dic4) = {1, r, s, rs} = 〈s〉 ∼= C4,
but when n > 1, one has that Z(Dic4n) = {1, rn} = {1, s2}. Either way the center contains the unique
element of order 2: rn = s2. Our observations that for n > 1 the center of the group has order two and that
it has a unique element of order 2 immediately yield:

Lemma 7.1. When n > 1, it is only possible to realize Dic4n in characteristics 0, 2, 3, 4, or 6. Moreover, if
we realize a dicyclic group in a characteristic other than 2, then we must have rn = s2 = −1.

A pair of simple calculations will rule out characteristics 3 and 6.

Lemma 7.2. Dicyclic groups cannot be realized in characteristic 3.

Proof: Suppose R realizes Dic4n and char(R) = 3. Since char(R) = 3 6= 2, we have that rn = s2 = −1.
Consider (1 + s)4 = 1 + 4s+ 6s2 + 4s3 + s4 = 1 + s+ 0 + (−1)s+ 1 = 2 = −1. Therefore, (1 + s)8 = 1 and
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(1 + s)4 = −1 6= 1. This means that 1 + s is a unit of order 8. Since s, rs, . . . , r2n−1s are elements of order
4, we must have 1 + s = rk for some k. This implies that r(1 + s) = rk+1 = (1 + s)r and so rs = sr. This
then implies that r = r−1, but then r2 = 1 and so n = 1. However, Dic4 (a cyclic group of order 4) has no
elements of order 8. We have reached a contradiction. �

Our argument for characteristic 6 is quite similar.

Lemma 7.3. Dicyclic groups cannot be realized in characteristic 6.

Proof: Suppose R realizes Dic4n and char(R) = 6. Again, since char(R) = 6 6= 2, we have that
rn = s2 = −1. Consider (2 + s)4 = 24 + 4 · 23s+ 6 · 22s2 + 4 · 2s3 + s4 = 4 + 2s+ 0 + 2(−1)s+ 1 = 5 = −1.
Therefore, (2 + s)8 = 1 and (2 + s)4 = −1 6= 1. This means that 2 + s is a unit of order 8. As in the proof
above, noting that 2 + s commutes with r will yield the same contradiction. �

It turns out that characteristics 2 and 4 are viable but only for the first few dicyclic groups. Again we
established this using a series of calculations. First, we establish a preliminary identity.

Lemma 7.4. Suppose n > 1 and R realizes Dic4n in characteristic 2. Then for every integer k, we have
rk + rn+k = 1 + rn = rks+ rn+ks.

Proof: We observe that in characteristic 2: (1 + rn)2 = 1 + 2rn + r2n = 1 + 1 = 0. Now notice that
(rk + 1 + rn)2 = r2k + (1 + rn)2 = r2k. Therefore, rk + 1 + rn is a unit. If rk + 1 + rn = r`s for some
integer `, we would have that r`s is a polynomial in r and thus commutes with r. This would imply that
r`+1s = r`−1s and consequently r = r−1 so that r2 = 1 and so n = 1 (contradiction). Thus we must have
that rk + 1 + rn = r` for some integer ` so that 1 + rn = rk + r`. Squaring both sides yields: 0 = r2k + r2`.
Since r2k = r2` and r is of order 2n, we must have 2k ≡ 2` mod 2n and so k ≡ ` mod n. Notice that we
cannot have k = ` since otherwise 1 + rn = rk + rk = 0 and so rn = 1 (contradiction). Therefore, ` = k+ n.
We have established that rk + rk+n = 1 + rn.

Likewise consider rks+1+rn. Then (rks+1+rn)2 = (rks)2 +(1+rn)2 = rn+0 = rn. Thus rks+1+rn

is a unit of order 4. Next, if rks + 1 + rn = r`, we would have rks = 1 + rn + r`. This again forces s to
commute with r and thus implies n = 1 (contradiction). Therefore, rks + 1 + rn = r`s for some integer `.
Thus 1+rn = rks+r`s. Squaring both sides yields 0 = rn+rk−`s2 +r`−ks2 +rn. Thus 0 = rk−`+n+r`−k+n

which implies that k − ` ≡ ` − k mod 2n (i.e., 2k ≡ 2` mod 2n). Therefore, k ≡ ` mod n. However, k 6= `
since otherwise we would have 1 + rn = rks+ rks = 0 so that rn = 1 (contradiction). Therefore, ` = k + n.
We have established that for any integer k, 1 + rn = rks+ rk+ns. �

Lemma 7.5. If R realizes Dic4n in characteristic 2, then n = 1 or 2.

Proof: Suppose n > 1. Consider the element x = (r + rn−1)(1 + s) = r + rn−1 + rs + rn−1s. Keeping in
mind that srk = r−ks, s2 = rn, and rk = r` if k ≡ ` mod 2n, we have x2 = r2 +rn+r2s+rns+rn+r2n−2 +
rns+ r2n−2s+s+ rn+2s+ rn+ r2 + rn−2s+s+ r2n−2 + rn = 2r2 +4rn+ r2s+2rns+2r2n−2 + r2n−2s+2s+
rn+2s+ rn−2s = r2s+ rn+2s+ rn−2s+ r2n−2s. Using the lemma above, we have x2 = 1 + rn + 1 + rn = 0.
Therefore, u = 1 + x is a unit of order 1 or 2 since u2 = 12 + x2 = 1 + 0 = 1. In particular, u = 1 or
u = rn. Either way, u = 1 + r + rn−1 + rs + rn−1s is a power of r and so rs + rn−1s commutes with r.
Therefore, r2s+ rns = r(rs+ rn−1s) = (rs+ rn−1s)r = s+ rn−2s and so r2 + rn = 1 + rn−2. We now have
1 + rn = r2 + rn−2, but the lemma above gives us 1 + rn = r2 + rn+2. Therefore, rn−2 = rn+2 and so r4 = 1.
This implies n ≤ 2. �

We have the same result for characteristic 4. However, our calculations are a little easier this time. We
begin by establishing some helpful identities.

Lemma 7.6. Suppose R realizes Dic4n in characteristic 4. If x ∈ R, then either 2x = 0 or 2x = 2. Moreover,
if x ∈ R×, then 2x = 2.

Proof: Since char(R) 6= 2, we have rn = s2 = −1. Let x ∈ R. We have (1 + 2x)2 = 1 + 4x + 4x2 = 1.
Thus 1 + 2x is always a unit of order 1 or 2. In particular, 1 + 2x = 1 or 1 + 2x = −1. Therefore, either
2x = 0 or 2x = 2. Moreover, if x ∈ R×, then 2x = 0 would imply that 2 = 0x−1 = 0 so that char(R) 6= 4
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(contradiction). Thus for all x ∈ R×, we have 2x = 2. �

Lemma 7.7. If R realizes Dic4n in characteristic 4, then n = 1 or 2.

Proof: Again, we note that since char(R) 6= 2, we have rn = s2 = −1. Consider x = r+ rn−1 + rs+ rn−1s.
Keeping in mind that rn = −1, we have x2 = r2+rn+r2s+rns+rn+r2n−2+rns+r2n−2s+s+rn+2s+rn+
r2+rn−2s+s+r2n−2+rn = r2−1+r2s−s−1+r2n−2−s−rn−2s+s−r2s−1+r2+rn−2s+s+r2n−2−1 =
2r2 + 2r2n−2 = 2 + 2 = 0 noting that r2 and r2n−2 are units and using our lemma above.

Next, notice that 2x = 2r + 2rn−1 + 2rs + 2rn−1s = 2 + 2 + 2 + 2 = 0 where repeatedly use our lemma
above after noting that r, rn−1, rs, and rn−1s are units. Therefore, (1 + x)2 = 1 + 2x+ x2 = 1 + 0 + 0 = 1
so that 1 + x is a unit of order 1 or 2. In particular, either 1 + x = 1 or 1 + x = −1 so that x = 0 or x = 2.
Therefore, rs+rn−1s equals −r−rn−1 or −r−rn−1+2. Either way, rs+rn−1s = (r+rn−1)s is a polynomial
in r and thus must commute with r. However, (r2−1)s = r(rs+rn−1s) = (rs+rn−1s)r = (1+rn−2)s. Thus
r2− 1 = 1 + rn−2 and so r2− 1 = 1− r−2. Therefore, r2 = 2− r−2 and so r4 = (2− r−2)2 = 4− 4r−2 + r−4.
Thus r8 = 1 and so the order of r divides 8. Suppose the order of r is 8. Then r4 = −1. We already know
r2 = 2 − r−2. Multiplying by r2 yields −1 = r4 = 2r2 − 1 so 2r2 = 0. But r2 is a unit, so this contradicts
our lemma above. Therefore, the order of r must be 2 or 4 (i.e., n = 1 or 2). �

We have now shown that for n > 2, Dic4n cannot be realized in a non-zero characteristic. The results for
non-zero characteristic above are sharp.

Example 7.8. Dic4 ∼= C4 can be realized by Z[i], Zδ2 = Z2[x]/(x3), Gil = Z4[x]/(2x, x2 + 2), Z5, and Z10 in
characteristics 0, 2, 4, 5, and 10 respectively. All other characteristics are impossible.

Example 7.9. Dic8 (the quaternion group of order 8) can be realized by Z[i, j, k], RD2 = Z2[Dic8]/(1 + s+
r + rs), and RD4 = Z4[Dic8]/(1 + s + r + rs, 1 + s2) in characteristics 0, 2, and 4 respectively. All other
characteristics are impossible.

Note that it is easy to check that (Z[i, j, k])× ∼= Dic8. The other realizations (i.e., the quotients of groups
algebras RD2 and RD4) were checked using [7] in [10].

Corollary 7.10. Suppose a finite ring R realizes Dic4n. Then either n = 1 and char(R) ∈ {2, 4, 5, 10} or
n = 2 and char(R) ∈ {2, 4}. Conversely, there are rings realizing Dic4 in characteristics 2, 4, 5, and 10 as
well as rings realizing Dic8 in characteristics 2 and 4.

This solves Fuchs’ problem restricted to finite rings, moving to characteristic 0, we no longer have a
complete solution. However, we do have some partial results. First, recall that if we let ω2n = exp(2πi/2n)
where n is some positive integer, then the cyclotomic integer ring Z[ω2n] has infinitely many units if and
only if n > 3 (see Appendix A). Therefore, Z[ω2n, j] (a subring of the quarternion algebra) also has infinitely
many units. Thus we cannot directly use our construction of dicyclic groups inside H to realize them in
characteristic 0 (at least when n > 3).

On the other hand, when n = 1, 2, and 3, this construction yields exactly what we want.

Example 7.11. Consider ω2 = −1 and Z[ω2, j] = Z[j]. This is the Gaussian intergers which realize
Dic4 ∼= C4 in characteristic 0. Likewise, consider ω4 = i and Z[ω4, j] = Z[i, j] = {n1 + n2i + n3j +
n4k | n1, n2, n3, n4 ∈ Z} (i.e., the Lipschitz integers). This ring realizes Dic8 (the quaternion group of order
8) in characteristic 0.

The final workable case is that of ω6 =
1 +
√

3i

2
and Z[ω6, j]. Recall that Z[ω6] are called Eisenstein

integers. We might call our ring Z[ω6, j] the Eisenstein quaternions.

Example 7.12. The Eisenstein quaternions realize Dic12 in characteristic 0.

For simplicity let ω = ω6 =
1 +
√

3i

2
. Notice that ω2 =

−1 +
√

3i

2
= −1+ω and ω5 = ω =

1−
√

3i

2
. Thus

Z[ω, j] = {n1 + n2ω + n3j + n4ωj | n1, n2, n3, n4 ∈ Z} and this ring is closed under quaternion conjugation.

Next, q = n1 + n2ω + n3j + n4ωj =
(
n1 +

n2
2

)
+
n2
√

3

2
i +

(
n3 +

n4
2

)
j +

n4
√

3

2
k so that the norm of

q is N(q) =
(
n1 +

n2
2

)2
+

3n22
4

+
(
n3 +

n4
2

)2
+

3n24
4

= n21 + n1n2 + n22 + n23 + n3n4 + n24. In particular,

N(q) ∈ Z≥0.
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If q is a unit, then N(q)N(q−1) = N(qq−1) = N(1) = 1, but since N(q) is a non-negative integer, we
must have N(q) = 1. Conversely, if N(q) = 1, then qq = qq = N(q) = 1 so that q−1 = q and thus q is a
unit.

Notice that n21 + n1n2 + n22 =
(
n1 +

n2
2

)2
+

3n22
4
≥ 0 and likewise n23 + n3n4 + n24 ≥ 0. Therefore,

n21 + n1n2 + n22 = 1 and n23 + n3n4 + n24 = 0 or n21 + n1n2 + n22 = 0 and n23 + n3n4 + n24 = 1. If

n21 + n1n2 + n22 =
(
n1 +

n2
2

)2
+

3n22
4

= 0, we must have n1 = n2 = 0 (and similarly for n3 and n4). Notice

that 1 =
(
n1 +

n2
2

)2
+

3n22
4
≥ 3n22

4
implies |n2| < 2 so that n2 = 0,±1. By symmetry the same is true for n1.

We get that the only solutions of n21 +n1n2 +n22 = 1 are (n1, n2) = (±1, 0), (0,±1), and (±1,∓1). The same
applies to n3 and n4. Putting this altogether, we have that Z[ω, j]× = {±1,±ω,±(1−ω),±j,±ωj,±(1−ω)j}.
This unit group is precisely Dic12.

If we take into account the realization results of all groups of orders 12 or less, we arrive at the following
interesting result:

Corollary 7.13. The dicyclic group of order 12, Dic12, is the smallest realizable group that cannot be realized
by a finite ring (i.e., Dic12 is the smallest group realizable only in characteristic 0).

Adapting a construction found in [2], we can construct infinitely many other dicyclic groups in character-
istic 0.

Example 7.14. Again recall the semidirect product ring construction found in Remark 1.4. Let k be a
positive integer such that every prime factor of k is congruent to 1 modulo 4. This implies that Z×k contains
an element τ such that τ2 = −1 and that k is odd.

Consider f, g : Z[i] → Zk defined by f(x + yi) = x + yτ and g(x + yi) = x − yτ (i.e., evaluation at
±τ). Equipped with these ring homomophisms, we get that Zk o Z[i] is a ring with multiplication: (m, a +
bi)(n, c + di) = (m(c + dτ) + n(a − bτ), (a + bi)(c + di)). Our units consist of the set (Zk o Z[i])× =
{(m,±1), (m,±i) | m ∈ Zk}.

A simple inductive argument shows that (−1,−1)` = ((−1)``, (−1)`). In particular, (−1,−1)k = ((−1)kk, (−1)k) =
(0,−1) since k is odd and also (−1,−1)2k = (0, 1) so that (−1,−1)−1 = (−1,−1)2k−1 = ((−1)2k−1(2k −
1), (−1)2k−1) = (1,−1). It also follows that (−1,−1)k = (0,−1) = (0, i)2. Next, notice that (−1,−1)(0, i) =
((−1)τ + 0(−1), (−1)i) = (−τ,−i) and (0, i)(−1,−1)−1 = (0, i)(1,−1) = (0(−1), 1(−τ), i(−1)) = (−τ,−i).

In summary, if we let r = (−1,−1), let s = (0, i), and recall that 1 = (0, 1), then we have shown r2k = 1,
rk = s2, and rs = sr−1. Since there are exactly 4k units in this ring, we have established (ZkoZ[i])× ∼= Dic4k.

In particular, we can realize dicyclic groups such as Dic20, Dic52, and Dic100, but this construction and
our results say nothing about Dic28 and Dic36. On the other hand, we can rule out some dicyclic groups
altogether using Proposition 1.3 . In the context of dicyclic groups this proposition tells us the following:

Proposition 7.15. If we can realize Dic4n in characteristic c, then we can realize C2n in characteristic c.

Example 7.16. The dicyclic group Dic16 is not realizable. For sake of contradiction, suppose Dic16 is
realized by R. Then by Corollary 7.10, we must have char(R) = 0. By the above proposition, we can then
realize C8 in characteristic 0, but according to Lemma 3.3 this is not possible.

Let us extend this example by relying on the main result from [9]. In particular, Theorem 3.1 says
that while any cyclic group of twice an odd integer order can be realized, if the order is divisible by 4,
realizability is not guaranteed. In fact, Theorem 5.1 and Corollary 5.17 in [5], place several restrictions on
n. In particular, we find the cyclic groups of orders divisible by 8 are not realizable in characteristic 0. Since
Dic4n must be realized in characteristic 0 for n > 2 and realizing Dic4n in characteristic 0 implies we can
realize C2n in characteristic 0, we have the following:

Proposition 7.17. If n is divisible by 4, then Dic4n cannot be realized.

We provide the following table of realizations of dicyclic groups Dic4n in all viable characteristics for n ≤ 5
as well as partial results for some larger n:
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Dic4 ∼= C4 Dic8 ∼= Q Dic12 Dic16 Dic20

c = 0: Z[i] c = 5: Z5 c = 0: Z[i, j, k] c = 0: Z[ω6, j] None c = 0 : Z5 o Z[i]

c = 2: Zδ2 c = 10: Z10 c = 2: RD2

c = 4: Gil c = 4: RD4

Dic4n where every prime dividing n Dic4n where n is divisible by 4

is congruent to 1 mod 4

c = 0: Zn o Z[i] None

Appendix A. Roots of Unity

In this appendix, we collect some facts about roots of unity. In particular, we look at the units of the
rings generated a root of unity (i.e., rings of cyclotomic integers).

Let m be a positive integer and ωm = exp(2πi/m), so ωm is a primitive m-th root of unity. Note that if
m is odd, (−ωm)m = (−1)m(ωm)m = −1, so −ωm is a (2m)-th primitive root of unity. In particular, when
m is odd, Z[ωm] = Z[ω2m].

The first few such rings are familiar. When m = 1 or 2 we have the integers: Z[ω1] = Z[ω2] = Z[−1] = Z
where Z× = {±1} ∼= C2. Selecting m = 4 yields the Gaussian integers: Z[ω4] = Z[i] where Z[i]× =
{±1,±i} ∼= C4. Finally, selecting m = 3 or 6 yields the possibly less familiar Eisenstein integers Z[ω3] =

Z[ω6]. Note that ω3 =
−1 + i

√
3

2
and (ω3)2 + ω3 + 1 = 0 so (ω3)2 = −ω3 − 1. In particular, we can reduce

any quadratic (or higher) power of ω3. Thus Z[ω3] = {a+ bω3 | a, b ∈ Z}.
To determine the group of units of Z[ω3], we use the norm: N(z) = zz = |z|2 (i.e., the complex modulus

squared). For any z = a+bω3 ∈ Z[ω3] where a, b ∈ Z, we have N(z) = N(a+bω3) = N
((
−a+ b

2

)
+ b
√
3

2 i
)

=(
−a+ b

2

)2
+ 3b2

4 = a2 − ab+ b2. In particular, N(a+ bω3) is a non-negative integer for any a+ bω3 ∈ Z[ω3].
Since the norm’s values are non-negative integers and the norm is multiplicative, a standard argument implies
a+ bω3 is a unit if and only if N(a+ bω3) = 1.

Suppose z = a+ bω3 is a unit of Z[ω3] (where a, b ∈ Z). Thus
(
−a+ b

2

)2
+ 3b2

4 = a2 − ab+ b2 = 1 so that
3b2

4 ≤ 1. Thus, we must have |b| < 2. We also have a2 − ab+ b2 = 3a2

4 +
(
−b+ a

2

)2
, so |a| < 2 as well. Thus

a, b ∈ {0,±1}. The only solutions are a = 0 with b = ±1, a = ±1 with b = 0, or a = b = ±1. These are
precisely the sixth roots of unity: {±1,±ω3,±(1 + ω3)}. Thus Z[ω6]× = Z[ω3]× = {1, ω6, . . . , (ω6)5} ∼= C6.

Thus Z[ωm] has a finite group of units when m = 1, 2, 3, 4 or 6. It turns out that all other rings of
cyclotomic integers have infinitely many units. We confirm this with a concrete calculation.

Let m > 1 so that ωm 6= 1. Let k be an integer such that 1 < k < m and gcd(k,m) = 1. Then there
exists x, y ∈ Z such that kx = my + 1. Notice that k(x+m`) = m(y + k`) + 1. Thus we may assume that
x, y > 0. Also, ωm is primitive implies (ωm)k 6= 1 (since k < m). Consider the following element:

u =
(ωm)k − 1

ωm − 1
= (ωm)k−1 + · · ·+ ωm + 1 ∈ Z[ωm]

Then we have that:

u−1 =
ωm − 1

(ωm)k − 1
=

(ωm)my+1 − 1

(ωm)k − 1
=

(ωm)kx − 1

(ωm)k − 1
= (ωm)(x−1)k + · · ·+ (ωm)x−1 + 1 ∈ Z[ωm]

Thus we have demonstrated that u ∈ Z[ωm]×.
Since when m is odd, Z[ωm] = Z[ω2m], we only need to consider even m. Consider m = 2` where ` is odd

and ` > 3. Then `−2 is odd and m = 2` and k = `−2 are relatively prime. Thus u = (ωm)`−3 + · · ·+ωm+1
is a unit in Z[ωm]. Likewise, consider m = 2` where ` is even and ` > 2. Then `− 1 is odd and m = 2` and
k = `− 1 are relatively prime. Thus u = (ωm)`−2 + · · ·+ ωm + 1 is a unit in Z[ωm].

In either case, we have a unit u in Z[ωm] as a sum of 1 plus other roots of unity in the upper-half plane
of C and thus u lies outside the unit circle in C. Therefore, u itself is not a root of unity. In fact, N(u) > 1
so that u is an element of infinite multiplicative order in Z[ωm]×. Therefore, Z[ωm]× is infinite for m = 5 or
m > 6.

Consequently, while we have a copy of Dic4n within the subring Z[ω2n, j] of the quaternions, this ring
contains infinitely many units when n > 3 and thus cannot directly realize Dic4n for n > 3.
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Appendix B. Ring Constructions

In this appendix we calculate unit groups of various rings used in realizations throughout the paper.

Lemma B.1. Let p be a prime. The unit group of Zεp = Zp[x]/(x2) is Cp(p−1).

Proof: We work mod (x2). Every element is equivalent to some a + bx where a, b ∈ Zp are uniquely
determined.

First, suppose that a 6= 0. Then a−1 exists in Zp. We have (a+bx)(a−1−a−2bx) = 1+(−a−1b+a−1b)x+
a−2b2x2 = 1. On the other hand, if a = 0, bxbx = b2x2 = 0 so either bx is zero or a zero divisor (i.e., not a
unit). We know see that the units of Zεp are precisely the elements a+ bx with a 6= 0. Thus there are exactly
p(p− 1) units.

Since p is prime, there exists some ζ ∈ (Zp)× such that (Zp)× = 〈ζ〉. A simple inductive argument shows
that (ζ +x)k = ζk + kζk−1x for any positive integer k. Notice that kζk−1 = 0 requires k = 0 (mod p). Since
p and p−1 are relatively prime, the first power k such that ζk = 1 and kζk−1 = 0 is k = p(p−1). Therefore,
ζ + x has order p(p− 1) and thus generates the group of units. �

Lemma B.2. The unit group of Zδ2 = Z2[x]/(x3) is C4.

Proof: We work mod (x3). Every element is equivalent to some a+ bx+ cx2 where a, b, c ∈ Z2 are uniquely
determined.

Notice that if a = 0, then (bx + cx2)x2 = 0 so that bx + cx2 is either zero or a zero divisor (i.e., not a
unit). On the other hand, we have 1 + x, (1 + x)2 = 1 + x2, (1 + x)3 = 1 + x + x2, (1 + x)4 = 1. Thus
(Zδ2)× = 〈1 + x〉 ∼= C4. �

Lemma B.3. The unit group of Gil = Z4[x]/(2x, x2 + 2) is C4.

Proof: Using the relation x2 + 2 (i.e., x2 = 2), we only need to consider representatives of the form a+ bx
where a, b ∈ Z4. In addition, we have 2x = 0, so we can require b = 0 or 1. Thus Gil = {0, 1, 2, 3, x, 1 +
x, 2 + x, 3 + x} is a ring with 8 elements.

Notice that 2(x) = 2x = 0 and 2(2 + x) = 0 + 2x = 0 thus 2, 2x, and 2 + x are zero divisors. Next,
(1 +x)2 = 1 + 2x+x2 = 1 + 0 + 2 = 3, (1 +x)3 = (1 +x)3 = 3 + 3x = 3 +x, and (1 +x)4 = (1 +x)(3 +x) =
3 + 4x+ x2 = 3 + 0 + 2 = 1. Therefore, Gil× = {1, 1 + x, 3, 3 + x} = 〈1 + x〉 ∼= C4. �

Lemma B.4. Let m be an odd positive integer. The unit group of PSm = Z[x]/(mx, x2) is C2m.

Proof: We work mod (x2) and notice that the relation 2m implies every element can be uniquely represented
as a+ bx where a ∈ Z and b ∈ {0, 1, . . . ,m− 1}.

Let s, t ∈ PSm so that s = a + bx and t = c + dx for some a, c ∈ Z and b, d ∈ {0, 1, . . . ,m − 1}. We
calculate: (a + bx)(c + dx) = ac + (ad + bc)x + dbx2 = ac + (ad + bc mod m)x. If we wish st = 1, then we
must have ac = 1. Therefore, units must be of the form ±1 + bx.

Notice that (1+bx)(1+(m−b)x) = 1+(b+m−b)x+b(m−b)x2 = 1+mx = 1 and (−1+bx)(−1+(m−b)x) =
1 + (−b − m + b)x + b(m − b)x2 = 1 − mx = 1. So (PSm)× = {±1 + bx | b ∈ Z such that 0 ≤ b < m}.
Also, (−1 + x)k = (−1)k + (−1)k−1kx = 1 only if k is an even multiple of m. Thus −1 + x has order 2m.
Therefore, (PSm)× = 〈−1 + x〉 ∼= C2m. �

Lemma B.5. The unit group of M = Z8[x]/(x2 + 1, 2x− 2) is C2 × C4.

Proof: The relation x2 + 1 allows us to reduce elements to those of the form a+ bx and the second relation
2x− 2 allows us to assume b = 0 or 1. Therefore, M = {a+ bx | a ∈ Z8 and b = 0 or 1}.

Notice that (2k + 1 + x)4 = 4(2k + 1) + 4x = 4(2k + 1) + 4 = 8(k + 1) = 0 for any k since 2x = 2.
Therefore, it follows that 0, 2, 4, 6, 1 + x, 3 + x, 5 + x, and 7 + x are not units. On the other hand, for any
k, (2k + x)2 = 4k2 + 4kx+ x2 = 4k2 + 4k − 1 = 4k(k + 1)− 1 = −1 since 2x = 2, x2 = −1, and 4k(k + 1) is
a multiple of 8. Thus (2k+ x)4 = (−1)2 = 1, so x, 2 + x, 4 + x, and 6 + x are units of order 4. Since 1, 3, 5,
and 7 are units, we have that M× = {1, 3, 5, 7, x, 2 + x, 4 + x, 6 + x}. Moreover, this is an Abelian group of
order 8. It has too many elements of order 4 to be cyclic. Thus M× ∼= C2 × C4. �
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