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How Do You Solve

“First-Order ODEs”

Using Symmetry?



An ordinary differential equation (ODE) is an equation involv-
ing (ordinary) derivatives.

A solution of an ODE is a function such that the ODE is
satisfied when the solution and its derivatives are plugged into
the equation.

The order of an ODE is the highest order derivative appearing
in the equation.

Example: y′′+ y = 0 is a second order ODE. y = sin(x) is a
solution and so is y = cos(x). In fact, for any choice of real
numbers C1 and C2, we have that y = C1 sin(x) +C2 cos(x) is
a solution.

We looked at symmetry methods for solving first order ODEs.
These same techniques can be extended to solve higher order
ODEs and PDEs (partial differential equations).



An Equation with Rotational Symmetry

Example:

y′ = y3+x2y−y−x
x3+xy2+y−x

The figure on the left

shows several solutions of

this equation. We can see

that they have an obvious ro-

tational symmetry. It turns

out that this can be detected

by looking at the form of the

equation.

Once this is known, we can

easily cook up an integrating

factor and solve the equa-

tion.



The Set Up

We start with the first order ODE: dy
dx = B(x,y)

A(x,y).

First, we convert this equation to its Pfaffian form:

−Bdx+Ady = 0

If −By = −
∂B

∂y
=

∂A

∂x
= Ax, then this would be an exact

differential equation which could easily be solved. Our goal is

to find an integrating factor to make this equation exact so

we can solve it.



Finding an Integrating Factor

Let Ψ(x, y) = ψ be an implicitly defined solution (so ψ is a

constant depending on some initial condition).

So Ψx dx+ Ψy dy = �
�
�>0

dψ or equivalently Ψx + Ψy
dy
dx = 0.

Suppose y(x) is an explicit solution: Ψ(x, y(x)) = Ψx
�
�
��7

1
dx
dx+Ψy

dy
dx

dy
dx = B(x,y)

A(x,y) from original equation thus,

Ψx(x, y) + Ψy(x, y)B(x,y)
A(x,y) = 0 and so

A(x, y)Ψx(x, y) +B(x, y)Ψy(x, y) = 0



Symmetries of Solutions

In general, if F is a (structure preserving) map or operation
such that F sends some object X to itself, then we say F is a
symmetry of X.

A symmetry of a differential equation is a mapping from a
collection of functions to itself which sends solutions (of that
ODE) to solutions.

Let x̃ = F (s, x, y) and ỹ = G(s, x, y) such that for each real
number s, ỹ(x̃) is a solution whenever y(x) is a solution. In
other words, for each choice of s, F and G define a symmetry
of our ODE. [Secretly we are defining a 1-parameter Lie group.]

Moreover, we assume that F (0, x, y) = x and G(0, x, y) = y,
so s = 0 corresponds to the identity map (this sends each
solution to itself).



Tangents of Symmetries

Since Ψ(x, y) = ψ is a solution, then Ψ(x̃, ỹ) = ψ(s) is a solu-
tion (for possibly some other choice of constant ψ(s)). Since
s = 0 corresponds to the identity, Ψ(x, y) = ψ = ψ(0). In
general, Ψ

(
F (s, x, y), G(s, x, y)

)
= ψ(s).

Expand this equation in terms of its Maclaurin series (in s):

Ψ
(
F (s, x, y), G(s, x, y)

)∣∣∣∣∣
s=0

ψ(0)

+
[
Ψx(. . . )Fs(s, x, y) + Ψy(. . . )Gs(s, x, y)

]∣∣∣∣∣
s=0

s = ψ′(0)

+O(s2) +O(s2)

Ψ
��

���
���

�:x(
F (0, x, y),

��
���

���
�:y

G(0, x, y)
)

+
[
Ψx���

���
���:x(

F (0, x, y),
��

���
���

�:y
G(0, x, y)

)
·Fs(0, x, y)+Ψy���

���
���:x(

F (0, x, y),
��

���
���

�:y
G(0, x, y)

)
·Gs(0, x, y)

]
s

+O(s2) = ψ(0) + ψ′(0)s+O(s2)



Tangents of Symmetries

Definition: ξ(x, y) = Fs(0, x, y) and η(x, y) = Gs(0, x, y)

[Secretly we have the Lie algebra of our 1-parameter Lie group.]

For all points, (x, y), lying on the solution curve we have

Ψ(x, y) = ψ(0).

So we get ψ(0)+
[
Ψxξ+Ψyη

]
s+O(s2) = ψ(0)+ψ′(0)s+O(s2).

Therefore, Ψxξ + Ψyη = ψ′(0) and finally after normalizing

ψ′(0) = 1, we get

Ψx ξ + Ψy η = 1



Using Cramer’s rule, we can now solve the system of equations:
AΨx +BΨy = 0 and ξΨx + ηΨy = 1.

Ψx = det

[
0 B
1 η

]
/det

[
A B
ξ η

]
=

−B
Aη −Bξ

Ψy = det

[
A 0
ξ 1

]
/det

[
A B
ξ η

]
=

A

Aη −Bξ

Define: M =
1

Aη −Bξ
is an integrating factor which makes

the Pfaffian form of our original equation exact.

In particular, M(−Bdx+Ady) = M ·0 yields Ψxdx+ Ψydy = 0.

Therefore, we can solve our original equation:
Ψ(x, y) =“

∫
Ψxdx+ Ψydy” = Constant.



Reality Sets In

Unfortunately, there is no known way of finding symmetries

of a random differential equation from the equation itself. If

we could, we could solve all ODEs. In practice, one guesses a

possible form that the symmetry could take and then sees if

that works.

However, given a symmetry it is possible to determine what

the most general ODE with that symmetry looks like. This

has been done for some simple symmetries on the next slide.



Some first-order ODEs and Symmetries

Equation ξ η Equation ξ η

y′ = F [y] 1 0 y′ = y
x + xF [yx] 1 y

x

y′ = F [x] 0 1 xy′ = y + F [yx] x2 xy

y′ = F [ax+ by] b −a y′ = y
F [yx]

xy y2

y′ = (y+x)F [x2+y2]
(x−y)F [x2+y2]

y −x y′ = y
x+F [y] y 0

y′ = F [yx] x y xy′ = y + F [y] 0 x

y′ = xk−1F [ y
xk

] x ky xy′ = y
ln[x]+F [y] xy 0

xy′ = F [xe−y] x 1 xy′ = y(ln[x] + F [x]) 0 xy

y′ = yF [ye−x] 1 y y′ = yF [x] 0 y

where F is an arbitrary function.



Example 1:

Consider the equation y′ =
xy

x2 + y
.

This equation can be rewritten as y′ =
y

x+ y
x

.

Looking at the Table from Brian Cantwell’s text, we get that
ξ = xy and η = y2 are symmetry tangents.

Therefore, M(x, y) = 1
Aη−Bξ = 1

1·y2− y

x+y
x
·xy = x2+y

y3 will work as

an integrating factor.

The Pfaffian form the equation: −B dx + Ady = 0 becomes
−MB dx+MAdy = 0 which after some algebra simplifies to

−x2

y(x2 + y2)
dx+

(
−x3

y2(x2 + y2)
−

1

y2

)
dy = 0



Example 1:

Using standard integrating techniques (i.e. partial fractions),

we get: ∫ −x2

y(x2 + y2)
dx = −

x

y
+ arctan

(
x

y

)
+ C1(y)

∫ (
−x3

y2(x2 + y2)
−

1

y2

)
dy = −

1

y
−
x

y
+ arctan

(
x

y

)
+ C2(x)

Therefore, the solution is −1
y −

x
y + arctan

(
x
y

)
= C.



Example 1:

Maple can solve this equation as well:

--- Trying Lie symmetry methods, 1st order ---
-> Computing symmetries using: way = 2[

0,
x2y2 + y4

x3 + y2 + x2

]
<- successful computation of symmetries.

trying an integrating factor

from the invariance group

<- integrating factor successful



Example 2:

Consider the equation y′ =
y

x
+ x

(
1 +

y2

x2

)
.

Looking at the Table from Brian Cantwell’s text, we get that

ξ = 1 and η = y/x are symmetry tangents.

Therefore, M(x, y) = 1
Aη−Bξ = 1

1·yx−
(
y
x++x

(
1+y2

x2

))
·1

= − x
x2+y2

will work as an integrating factor.

The Pfaffian form the equation: −B dx + Ady = 0 becomes

−MB dx+MAdy = 0 which after some algebra simplifies to

x− ln(y)

x− ln(y) + 1
dx+

1

x− ln(y) + 1
·

1

y
dy = 0



Example 2:

After a quick bit of algebra (essentially polynomial division)

and a simple u-substitution (u = x− ln(y) + 1), we get:∫
x− ln(y)+1− 1

x− ln(y) + 1
dx =

∫
1−

1

x− ln(y) + 1
dx

= x− ln(x− ln(y) + 1) + C1(y)∫ 1

x− ln(y) + 1
·

1

y
dy = − ln(x− ln(y) + 1) + C2(x)

Therefore, the solution is x− ln(x− ln(y) + 1) = C.



Example 2:

Maple can solve this equation as well:

looking for linear symmetries 1st order,

trying the canonical coordinates of the invariance group

-> Computing canonical coordinates for the symmetry [1, y]

-> Calling odsolve with the ODE diff(y(x) x) = y(x) y(x)

*** Sublevel 2 ***

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

<- 1st order linear successful

-> Computing canonical coordinates for the symmetry [0, (x+1-ln(y))*y]

<- 1st order, canonical coordinates successful
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Thank You!

A big thanks to Dr. T, Dr. Palmer, and

Dr. Cook!


