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Abstract
These are notes from a presentation for MA 792M (Representation

Theory for Lie Algebras) taught by Professor Kailash Misra. The goal is to
present a construction of G2. In the �rst section I will present a summary
of basic facts about G2. In the second section I construct the root system
of G2 in R3 using the root system of B3 (which is the 7x7 orthoginal matrix
algebra). In the third section I will construct G2 itself (as a subalgebra
of o(7, C) ). In the �nal section I will sketch a construction of G2 as the
derivation algebra of the octonians. My primary source was Introduction
to Lie Algebras and Representation Theory by James E. Humphreys pages
102-106.

1 Preliminaries

Starting with the Dynkin diagram, we see that G2's Cartan matrix is:

A = (aij) =
(

2 −1
−3 2

)
Let us label our simple roots as α and β. (Let π = {α, β} be our set of simple
roots). Using the algorithm outlined in Humphreys it is easy to �nd all the
positive roots (hence all the roots). After calculating α and β root strings, we
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�nd that Φ+ = {α, β, α +β, 2α +β, 3α +β, 3α +2β} are all the positive roots
thus there are 12 roots all together:

Φ = {±α, ±β, ±(α + β), ±(2α + β), ±(3α + β), ±(3α + 2β)}

The Root System of G2

Note: The long roots form a root system of type A2 (this we be important
later).

Thus a Lie algebra of type G2 must be 2 + 12 = 14-dimensional. G2's
Weyl group is generated by the two re�ections: rα(x) = x− < x, α > α and
rβ(x) = x− < x, β > β where x ε E (x is in the Euclidean space spanned by
α and β). Now using a proposition from class (noting that a12a21 = 3) we see
that the order of rαrβ is 6. Thus the Weyl group is isomorphic to D6 (dihedral
group of order 12).

2 The Root System

Using representation theory one can show that G2 has an irreducible faithful
representation by 7x7 matricies (and in fact this is the smallest irreducible
faithful representation).

Consider o(7, C). Let us construct the root system in R3 (this is constructed
in Humphreys page 64). Let (e1, e2, e3) be the standard basis for R3. Then {e1−
e2, e2−e3, e3} is also a basis for R3. For the short roots we have ±e1,±e2,±e3.
For the long roots we have ±(e1− e2),±(e1− e3),±(e2− e3), ±(e1 + e2),±(e1 +
e3),±(e2 + e3).
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The Root System of o(7, C)

Now rotating and viewing this root system from the right angle we see the
root system for G2

The Root System of o(7, C) (di�erent view)

Now to construct the root system of G2. We want to project the roots of B3

onto the plane E = {(x, y, z) |x+y+z = 0} (the plane orthoginal to e1+e2+e3).
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Projecting to this plane we get:

±{e1−e2, e1−e3, e2−e3,
2
3
e1−

1
3
e2−

1
3
e3, −

1
3
e1+

2
3
e2−

1
3
e3, −

1
3
e1−

1
3
e2+

2
3
e3}

which happens to be the root system of G2.
Note: The long roots (of G2) form a root system of type A2 and also these

roots are precisely the short roots of B3.

3 Constructing G2 (as a subalgebra of o(7, C))

Let's start with the classical Lie algebra L0 = o(7, C). The standard basis for L0

in terms of matrix units Ei,j (7 x 7 complex matrix with 1 in the i, jth position
everything else zero):

gi,−j = Ei+1,j+1 − Ej+4,i+4 for 1 ≤ i 6= j ≤ 3 (6 matrices)

di = Ei+1,i+1 − Ei+4,i+4 for 1 ≤ i ≤ 3 (3 matrices)

E1,i+4 − Ei+1,1 and E1,i+1 − Ei+4,1 for 1 ≤ i ≤ 3 (3 + 3 matrices)

Ei+1,j+4 − Ej+1,i+4 and Ei+4,j+1−Ej+4,i+1 for 1 ≤ i < j ≤ 3 (3 + 3 matrices)

A Cartan subalgebra (CSA i.e. maximal toral subalgebra) of L0 is H0 =
span{d1, d2, d3}. For the CSA of L (our type G2 Lie algebra) we will use
H = span{d1 − d2, d2 − d3} = {

∑
aidi |

∑
ai = 0}. Let L be the span of

H together with gi,−j where 1 ≤ i 6= j ≤ 3 (these correspond to the 6 long roots
which form a type A2 root system).

Now when we formed the root system of G2 from that of B3 we had to
project onto a plane and collapse 3 pairs of roots from B3 into the 3 short roots
of G2. So we need a combination of elements from these pairs of root spaces
(after some work) the correct choices are:

g1 = −gt
−1 =

√
2(E1,2 − E5,1)− (E3,7 − E4,6)

g2 = −gt
−2 =

√
2(E1,3 − E6,1) + (E2,7 − E4,5)

g3 = −gt
−3 =

√
2(E1,4 − E7,1)− (E2,6 − E3,5)

OR gi = −gt
−i =

√
2(E1,i+1 − Ei+4,1) − δi1(E3,7 − E4,6) + δi2(E2,7 − E4,5) −

δi3(E2,6 − E3,5)

Thus L is a subspace of L0 of dimension 14. First we need to show that L is
closed under the commutator bracket. Recall that [Ei,j , Ek,l] = δjkEi,l−δliEk,j

where δij =
{

1 i = j
0 i 6= j

}
is the Kronecker delta. We need the following rela-

tions 1 ≤ i, j, k, l ≤ 3:
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1. [gi,−j , gj,−i] = di − dj for i 6= j
[gi,−j , gk,−l] = δjkgi,−l − δilgk,−j for i 6= j, k 6= l, and (i, j) 6= (l, k)

2. [gi, g−i] = 3di − (d1 + d2 + d3)

3. [gi,−j , gk] = −δikgj

[gi,−j , g−k] = δjkg−i

4. [gi, g−j ] = 3gj,−i for i 6= j

5. [gi, gj ] = ±2g−k for i, j, k distinct
[g−i, g−j ] = ±2gk for i, j, k distinct (for the exact signs see the following
proof)

(1.)
[gi,−j , gk,−l] = [Ei+1,j+1−Ej+4,i+4, Ek+1,l+1−El+4,k+4] = [Ei+1,j+1, Ek+1,l+1]−
[Ei+1,j+1, El+4,k+4]− [Ej+4,i+4, Ek+1,l+1]+[Ej+4,i+4, El+4,k41] = δjkEi+1,l+1−
δliEk+1,j+1 − 0− 0− δjkEl+4,i+4 + δliEk+4,j+4

[gi,−j , gj,−i] =δjkgi,−l − δligk,−j for (i, j) 6= (l, k) and
[gi,−j , gj,−i] = Ei+1,i+1−Ej+1,j+1−Ei+4,i+4+Ej+4,j+4 = di−dj for (i, j) = (l, k)

(2.)
[g1, g−1] = [

√
2(E1,2−E5,1)− (E3,7−E4,6), −

√
2(E2,1−E1,5)+(E7,3−E6,4)] =

−2[E1,2, E2,1] − 2[E5,1, E1,5] − [E3,7, E7,3] − [E4,6, E6,4] = −2E1,1 + 2E2,2 −
2E5,5 + 2E1,1 −E3,3 + E7,7 −E4,4 + E6,6 =2d1 − d2 − d3 = 3d1 − (d1 + d2 + d3)

[g2, g−2] = [
√

2(E1,3−E6,1)+(E2,7−E4,5), −
√

2(E3,1−E1,6)− (E7,2−E5,4)] =
−2[E1,3, E3,1] − 2[E6,1, E1,6] − [E2,7, E7,2] − [E4,5, E5,4] = −2E1,1 + 2E3,3 −
2E6,6 + 2E1,1 −E2,2 + E7,7 −E4,4 + E5,5 =2d2 − d1 − d3 = 3d2 − (d1 + d2 + d3)

[g3, g−3] = [
√

2(E1,4−E7,1)− (E2,6−E3,5), −
√

2(E4,1−E1,7)+(E6,2−E5,3)] =
−2[E1,4, E4,1] − 2[E7,1, E1,7] − [E2,6, E6,2] − [E3,5, E5,3] = −2E1,1 + 2E4,4 −
2E7,7 + 2E1,1 −E2,2 + E6,6 −E3,3 + E5,5 =2d3 − d1 − d2 = 3d3 − (d1 + d2 + d3)

(3.)
[gi,−j , gk] = [Ei+1,j+1 − Ej+4,i+4,

√
2(E1,k+1 − Ek+4,1) − δk1(E3,7 − E4,6) +

δk2(E2,7−E4,5)−δk3(E2,6−E3,5)] = [Ei+1,j+1−Ej+4,i+4,
√

2(E1,k+1−Ek+4,1)] =
−δik

√
2E1,j+1 + δik

√
2Ej+4,1

(k = 1) [Ei+1,j+1 − Ej+4,i+4, −(E3,7 − E4,6)] = −δj2Ei+1,7 + δj3Ei+1,6 −
δj3E3,i+4 + δj2E4,i+4

(k = 2) [Ei+1,j+1−Ej+4,i+4, (E2,7−E4,5)] = δj1Ei+1,7−δj3Ei+1,5 +δj3E2,i+4−
δj1E4,i+4

(k = 3) [Ei+1,j+1 − Ej+4,i+4, −(E2,6 − E3,5)] = −δj1Ei+1,6 + δj2Ei+1,5 −
δj2E2,i+4 + δj1E3,i+4
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[gi,−j , gk] = −δik

√
2(E1,j+1 −Ej+4,1) +δ1k(δj2(E4,i+4 −Ei+1,7) + δj3(Ei+1,6 −

E3,i+4)) −δ2k(δj1(E4,i+4 − Ei+1,7) + δj3(Ei+1,5 − E2,i+4)) +δ3k(δj1(E3,i+4 −
Ei+1,6) + δj2(Ei+1,5 − E2,i+4)) = −δikgj

[gi,−j , g−k] = [Ei+1,j+1 − Ej+4,i+4,
√

2(E1,k+4 − Ek+1,1) + δk1(E7,3 − E6,4) −
δk2(E7,2−E5,4)+δk3(E6,2−E5,3)] = [Ei+1,j+1−Ej+4,i+4,

√
2(E1,k+4−Ek+1,1)] =−δjk

√
2Ei+1,1+

δjk

√
2E1,i+4

(k = 1) [Ei+1,j+1−Ej+4,i+4, (E7,3−E6,4)] = −δi2E7,j+1+δi3E6,j+1−δi3Ej+4,3+
δi2Ej+4,4

(k = 2) [Ei+1,j+1−Ej+4,i+4,−(E7,2−E5,4)] = δi1E7,j+1−δi3E5,j+1+δi3Ej+4,2−
δi1Ej+4,4

(k = 3) [Ei+1,j+1−Ej+4,i+4, (E6,2−E5,3)] = −δi1E6,j+1+δi2E5,j+1−δi2Ej+4,2+
δi1Ej+4,3

[gi,−j , g−k] = δjk

√
2(E1,i+4 − Ei+1,1) −δ1k(δi2(E7,j+1 − Ej+4,4) + δi3(Ej+4,3 −

E6,j+1)) +δ2k(δi1(E7,j+1 − Ej+4,4) + δi3(Ej+4,2 − E5,j+1)) −δ3k(δi1(E6,j+1 −
Ej+4,3) + δi2(Ej+4,2 − E5,i+4)) = δjkg−i

(4.)
[g1, g−2] = [

√
2(E1,2−E5,1)− (E3,7−E4,6), −

√
2(E3,1−E1,6)− (E7,2−E5,4)] =

−2[E1,2, E3,1]−2[E5,1, E1,6]+[E3,7, E7,2]+[E4,6, E5,4] = 2E3,2−2E5,6 +E3,2−
E5,6 = 3g2,−1

[g1, g−3] = [
√

2(E1,2−E5,1)− (E3,7−E4,6), −
√

2(E4,1−E1,7)+(E6,2−E5,3)] =
−2[E1,2, E4,1]−2[E5,1, E1,7]+[E4,6, E6,2]+[E3,7, E5,3] = 2E4,2−2E5,7 +E4,2−
E5,7 = 3g3,−1

[g2, g−3] = [
√

2(E1,3−E6,1)+(E2,7−E4,5), −
√

2(E4,1−E1,7)+(E6,2−E5,3)] =
−2[E1,3, E4,1]−2[E6,1, E1,7]+[E2,7, E6,2]+[E4,5, E5,3] = 2E4,3−2E6,7−E6,7 +
E4,3 = 3g2,−3

Now note that [gi, g−j ]t = (gig−j)t− (g−jgi)t = gt
−jg

t
i −gt

ig
t
−j = (−gj)(−g−i)−

(−g−i)(−gj) = gjg−i − g−igj = [gj , g−i]. Thus we have that: [g2, g−1] =
[g1, g−2]t = 3gt

2,−1 = 3g1,−2, [g3, g−1] = [g1, g−3]t = 3gt
3,−1 = 3g1,−3, and

[g3, g−2] = [g2, g−3]t = 3gt
3,−2 = 3g2,−3

(5.)
[g1, g2] = [

√
2(E1,2 − E5,1)− (E3,7 − E4,6),

√
2(E1,3 − E6,1) + (E2,7 − E4,5)] =

−2[E1,2, E6,1]−2[E5,1, E1,3]+
√

2[E1,2, E2,7]+
√

2[E5,1, E4,5] −
√

2[E3,7, E1,3]−√
2[E4,6, E6,1] = 2E6,2 − 2E5,3 +

√
2E1,7 −

√
2E4,1 +

√
2E1,7 −

√
2E4,1 = 2g−3

[g1, g3] = [
√

2(E1,2 − E5,1)− (E3,7 − E4,6),
√

2(E1,4 − E7,1)− (E2,6 − E3,5)] =
−2[E1,2, E7,1]−2[E5,1, E1,4]−

√
2[E1,2, E2,6]+

√
2[E5,1, E3,5] −

√
2[E3,7, E7,1]−√

2[E4,6, E1,4] = 2E7,2− 2E5,4−
√

2E1,6 +
√

2E3,1−
√

2E1,6 +
√

2E3,1 = −2g−2
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[g2, g3] = [
√

2(E1,3 − E6,1) + (E2,7 − E4,5),
√

2(E1,4 − E7,1)− (E2,6 − E3,5)] =
−2[E1,3, E7,1]−2[E6,1, E1,4]+

√
2[E1,3, E3,5]+

√
2[E6,1, E2,6] −

√
2[E2,7, E7,1]−√

2[E4,5, E1,4] = 2E7,3 − 2E6,4 +
√

2E1,5 −
√

2E2,1 −
√

2E2,1 +
√

2E1,5 = 2g−1

Now note that [gi, gj ]t = (gigj)t − (gjgi)t = gt
jg

t
i − gt

ig
t
j = (−g−j)(−g−i) −

(−g−i)(−g−j) = g−jg−i−g−ig−j = [g−j , g−i]. Thus we have that: [g−1, g−2] =
[g2, g1]t = −2gt

−3 = 2g3, [g−1, g−3] = [g3, g1]t = 2gt
−2 = −2g2, and [g−2, g−3] =

[g3, g2]t = −2gt
−1 = 2g1

The only relations left to check are those involving d1−d2 and d2−d3. First
note that: [d1 − d2, d2 − d3] = 0 because di's are diagonal (hence commute).

Now consider [di, gj,−k] = [Ei+1,i+1 − Ei+4,i+4, Ej+1,k+1 − Ek+4,j+4] =
[Ei+1,i+1, Ej+1,k+1]−[Ei+4,i+4, Ej+1,k+1]−[Ei+1,i+1, Ek+4,j+4]+[Ei+4,i+4, Ek+4,j+4] =
δijEi+1,k+1 − δikEj+1,i+1 + δikEi+4,j+4 − δijEk+4,i+4 = δijgi,−k − δikgj,−i

Thus we have that [d1−d2, gj,−k] = δ1jgj,−k− δ1kgj,−k− δ2jgj,−k + δ2kgj,−k

= (δ1j − δ1k − δ2j + δ2k)gj,−k which is non-zero since j and k are distinct. Like-
wise [d2 − d3, gj,−k] = Cgi,−k where C is non-zero. We have only gi's left to
check.

[d1 − d2, g1] = [E2,2 − E5,5 − E3,3 + E6,6,
√

2(E1,2 − E5,1) − (E3,7 − E4,6)]
=
√

2[E2,2, E1,2] +
√

2[E5,5, E5,1] + [E3,3, E3,7] + [E6,6, E4,6] = −
√

2E1,2 +√
2E5,1 + E3,7 − E4,6 = −g1

[d2 − d3, g1] = [E3,3 − E6,6 − E4,4 + E7,7,
√

2(E1,2 − E5,1) − (E3,7 − E4,6)]
= −[E3,3, E3,7]−[E6,6, E4,6]−[E4,4, E4,6]−[E7,7, E3,7] = −E3,7+E4,6−E4,6+E3,7

= 0

[d1 − d2, g2] = [E2,2 − E5,5 − E3,3 + E6,6,
√

2(E1,3 − E6,1) + (E2,7 − E4,5)]
= [E2,2, E2,7]+[E5,5, E4,5]−

√
2[E3,3, E1,3]−

√
2[E6,6, E6,1] =

√
2E1,3−

√
2E6,1+

E2,7 − E4,5 = g2

[d2 − d3, g2] = [E3,3 − E6,6 − E4,4 + E7,7,
√

2(E1,3 − E6,1) + (E2,7 − E4,5)]
=
√

2[E3,3, E1,3] −
√

2[E6,6, E6,1] + [E4,4, E4,5] + [E7,7, E2,7] = −
√

2E1,3 +√
2E6,1 + E4,5 − E2,7 = −g2

[d1 − d2, g3] = [E2,2 − E5,5 − E3,3 + E6,6,
√

2(E1,4 − E7,1) − (E2,6 − E3,5)]
= −[E2,2, E2,6]−[E5,5, E3,5]−[E3,3, E3,5]−[E6,6, E2,6] = −E2,6+E3,5−E3,5+E2,6

= 0

[d2 − d3, g3] = [E3,3 − E6,6 − E4,4 + E7,7,
√

2(E1,4 − E7,1) − (E2,6 − E3,5)]
= [E3,3, E3,5]+[E6,6, E2,6]−

√
2[E4,4, E1,4]−

√
2[E7,7, E7,1] =

√
2E1,4−

√
2E7,1−

E2,6 + E3,5 = g3

Because di's are diagonal we have that [di, g−j ]t = (dig−j − g−jdi)t = gt
−jd

t
i −

dt
ig

t
−j = −gjdi + digj = [di, gj ] thus [d1 − d2, g−1] = g−1, [d2 − d3, g−1] = 0,
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[d1−d2, g−2] = −g−2, [d2−d3, g−2] = g−2, [d1−d2, g−3] = 0, and [d2−d3, g−3] =
−g−3.

Thus we have shown that L is closed under bracket (thus a subalgebra of
L0) and furthermore, we have shown that the elements of L are common eigen-
vectors of ad(H). We have that NL(H) = {x ε L | [x, H] ⊆ H} = H (H is
self-normalizing), since all x ε L which aren't in H are eigenvectors with non-
zero eigenvalues for some h εH. Now [H, H] = {0} (H is abelian) thus H is
nilpotent, hence a CSA (self-normalizing and nilpotent).

We now have have a 14-dimensional Lie algebra L with a 2-dimensional CSA.
Thus if L is semi-simple, by the classi�cation theorem, L must be of type G2.

Proposition 1 Let L ⊆ sl(V ) (where V is �nite dimensional) be a non-zero Li
algebra acting irreducibly on V , then L is semi-simple.

Proof. See Humphreys page 102.
Consider L acting on C7(by regular matrix multiplication). Let (ei)7i=1 be

the standard basis for C7. (d1 − d2) + 3(d2 − d3) = E2,2 + 2E3,3 − 3E4,4 −
E5,5 − 2E6,6 + 3E7,7 ε H this matrix has distinct eigenvalues which implies that
any non-zero subspace of C7 invariant under L must contain at least one of the
standard basis vectors. Now consider the following:
g−1e1 =

√
2e2, g2,−1e2 = e3, g3,−2e3 = e4, g−2e4 = e5, g1,−2e5 = −e6, and

g2,−3e6 = −e7

Thus if one basis vector is in a subspace then all of the basis vectors are in that
subspace. Thus the only invariant subspaces are zero and L itself. Therefore, L
acts irreducibly on C7.

Finally, a quick examination of the basis for L shows that each matrix has
trace zero thus L ⊆ sl(7, C). Therefore by the above proposition L must be
semi-simple, hence of type G2.

Root Space Decomposition
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4 Constructing G2 (as the derivation algebra of
the octonians)

We now sketch the construction of G2 as the derivation algebra of the octonians.
First we must construct the octonians and review the de�nition of a derivation.

Let Θ be a 8-dimensional complex vector space whose elements are 2x2 ma-
trices with complex entries down the diagonal and 3-vectors on the o� diagonals.
That is

Θ =
{(

a v
w b

) ∣∣∣∣ a, b εC and v,w εC3

}
We give Θ its vector space structure by de�ning scalar multiplication and

vector addition componentwise. As for vector multiplication we take the follow-
ing: (

a v
w b

) (
c y
z d

)
=

(
ac− v · z ay + dv + w × z

cw + bz + v × y bd− w · y

)
where v · z is the standard dot product and v × y is the standard cross

product. Θ is a non-associative algebra called the Cayley or octonian algebra.
Fixing a basis and examining the multiplication table for Θ (see Humphreys
page 104-5), we can see that [Θ,Θ] = Θ0 is the span of{(

1 0
0 −1

)
,

(
0 e1

0 0

)
,

(
0 e2

0 0

)
,

(
0 e3

0 0

)
,

(
0 0
e1 0

)
,

(
0 0
e2 0

)
,

(
0 0
e3 0

)}

(trace 0 elements). The complement is spanned by

{(
1 0
0 1

)}
.

To review, a derivation is a linear transformation which satis�es the Leibnitz
rule: ϕ(xy) = ϕ(x)y + xϕ(y) (product rule). Let L = Der(Θ) (the set of all
derivations). It is easy to verify that a linear combination of derivations is still
a derivation thus L is a complex vector space. Also one can easily verify that
the commutator of two derivations is still a derivation. Thus L is a Lie algebra
with commutator bracket.

Consider ϕ εL and x =
(

1 0
0 1

)
(the muliplicative identity of the octoni-

ans) then ϕ(x) = ϕ(xx) = ϕ(x)x+xϕ(x) = 2ϕ(x) thus ϕ(x) = 0 (so �derivations
kill the constants�). Derivations leave Θ0 invariant, thus L acts faithfully on Θ0

and trivially on its complement. Let φ : L → gl(7, C) be the associated matrix
representation of L (using the above basis).

We need to show that L is simple and has a 2-dimensional CSA, but we also
need that L is su�ciently large (to rule out A2, B2, C2, and D2). To do this �rst

consider the following transformations: δ(x)
(

a v
w b

)
=

(
0 x(v)

−xt(w) 0

)
where x ε sl3(C). Each δ(x) is a derivation in L. Thus we have a non-trivial
hence faithful representation of sl3(C). Let M = {δ(x) |x ε sl3(C)}. Let H be
the image of the diagonal subalgebra of sl3(C). A simple calculation shows that
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H is its own centralizer in L. We know that Z(M) = {0} since M is simple thus
we also have that Z(L) = {0}. Therefore L is simple and has a CSA, H, which
is 2-dimensional. To show that L must be of type G2 we still need to show it is
bigger than the other rank 2 simple Lie algebras. To do this we note that Θ is
an alternative algebra, this is it sati�es:

x2y = x(xy)

yx2 = (yx)x

Let Da,b be a linear transformation de�ned by:

Da,b = [la, lb] + [la, rb] + [ra, rb]

where a, b εΘ and la, ra denote left and right multiplcation respectively. Then
Da,b is a derivation. These provide the remaining derivations needed to show
that L is of type G2. For more details see: Lie Algebras by Nathan Jacobson
pages 142-145 and An Introduction to Nonassociative Algebras by Richard D.
Schafer pages 75-90.
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