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1 Introduction

The study of geometry has been around for as long as people have thought about
shapes, but it wasn’t until the 17-1800’s that people like Gauss, Bolyai and Lobachevsky
started seriously studying non-Euclidean geometries. It was in the research of this era
that the first ideas of manifolds started to take shape [W]. Gauss was also the first
person to discuss some of the big theorems we usually see at the end of a standard
multi-variable calculus class. Specifically, in 1813 he proposed a theorem which is a
version of our modern divergence theorem or Gauss’ theorem. He continued publishing
other special cases of that theorem over the next few decades despite the fact that
Michael Ostrogradsky had proven the general theorem in 1826 [MAA]. The concept of
manifolds started gaining more attention in the next few decades as Niels Abel and
Carl Jacobi considered certain complex manifolds and Bernhard Riemann worked
tirelessly to generalize surfaces to higher dimensions in what he called Mannigfaltigkeit,
the origin of our term “manifold”. In 1895 Poincarè published a seminal paper titled
“Analysis Situs” in which he defines a differentiable manifold and around the same time
(1890-1892) Gregorio Ricci-Curbastro developed tensor calculus. These fields continued
growing in the early 20th century with developments such as Einstein’s use of tensors in
General Relativity and the discovery of more exciting theorems such as the Whiteney
Embedding Theorem for manifolds. At this point the study of manifolds and tensors
had become so far-reaching and rich that it is not possible to easily summarize:
Manifolds became fundamental to areas of physics, applied and pure math, engineering,
and even fields like chemistry and biology. Due to the use of manifolds and tensors
throughout much of modern science, especially in areas where complicated surfaces and
objects arise, some understanding of these concepts would be beneficial to most people
in STEM and as such we present a summary of some of the basics of tensors and
manifold theory in this paper along with some brief discussion of the Generalized
Stokes Theorem which is arguably one of the biggest theorems in calculus.
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2 Review of necessary fundamentals

Before we can get to talking about manifolds and tensors it would be prudent to review
some of the basics that underlie these topics. These will include defining vector spaces
and dual spaces along with some terminology and notation that will be useful to us
later. Much of the information in this section comes from Paul Renteln’s “Manifolds,
Tensors, and Forms” [R].

2.1 Vector spaces

A basic understanding of vectors is expected at this level, but due to the importance of
vector spaces and basis sets in essentially everything after this point we should spend
some time making sure we are familiar with them.

Definition 2.1.1: Vector Spaces

A vector space V over a field F is defined to be a nonempty set that is an Abelian
group under addition and given a, b ∈ F and v, w ∈ V we have:

1. av ∈ V

2. a(v + w) = av + bw

3. (a+ b)v = av + bv

4. a(bv) = (ab)v

5. 1v = v

Note that being an Abelian group under addition means that the set V abides by
the following properties for all v, w, x ∈ V :

1. Closure,
v + w ∈ V

2. Associativity,
(v + w) + x = v + (w + x)

3. Identity,
∃0 ∈ V such that
0 + v = v + 0 = v

4. Inverses,
∃ − v ∈ V such that
v + (−v) = (−v) + v = 0

5. Commutativity,
v + w = w + v

We will most commonly deal with vector spaces over the real numbers which means our
vector spaces will look like Rn and contain n-tuples of real numbers, the vectors, along
with individual real numbers, the scalars. Let us consider a less abstract case as an
example.
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Example 2.1.1

If we apply the third property listed in definition 2.1.1 to some randomly chosen
elements of V = R2, say a = 2, b = 3, and v = (3, 1), we see that the elements of
vector spaces behave in fairly intuitive ways:

(a+b)v = (2+3)(3, 1) = 5(3, 1) = (15, 5) = (6, 2)+(9, 3) = 2(3, 1)+3(3, 1) = av+bv

It would be nice to have a more systematic way to think about and understand vectors
in vector space, but to do this we will first need a couple of definitions. First, since this
terminology is relevant to the next definition, given vectors v1, . . . , vk in a vector space
V and scalars c1, . . . , ck ∈ F, we says c1v1 + · · ·+ ckvk is a finite linear combination of
the vectors v1, . . . , vk. Going forward when we say “linear combination” we mean finite
linear combination.

Definition 2.1.2: Linear Independence

A set of vectors S ⊂ V are said to be linearly independent if, for any finite
subset of vectors {v1, . . . , vk} ⊆ S and set of scalars {a1, . . . , ak} ⊂ F, then:

k∑
i=1

aivi = 0 implies that ai = 0 for all i

Briefly, only a trivial linear combination of elements of S can yield 0.

It is easily shown that a set of vectors is linearly independent if no vector in that set
can be written as a linear combination of the other vectors or in other words as the sum
of the other vectors times scalars from F.

Definition 2.1.3: Spanning Sets

A set of vectors W ⊂ V is called a spanning set for V , or is said to span V , if
every vector in V can be written as a linear combination of vectors from W . In
fact, given S ⊆ V , we denote the set of linear combinations of vectors drawn from
S by Span(S). Here S spans Span(S).

Definition 2.1.4: Basis Sets

A set, β, of linearly independent vectors that span V is called a basis for the vector
space V .

It can be shown (Page 154 of [J]) that any two bases for a vector space V must have
the same cardinality. Therefore, we call the cardinality of some basis (hence every
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basis) for V the dimension of V and denote it by dim(V ).
Now we have access to a more fundamental description of these vector spaces using the
definition of a basis set. The elements of these basis sets are very useful because they
act like the atoms in the universe of our vector space. As an example consider the real
numbers again:

Example 2.1.2

The standard basis for R3 is the set {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}.
Since the basis contains three elements we say that the vector space has dimension
3. Now it should also be clear that any element of the R3 vector space can be
constructed component-wise from these basis elements as: v = v1e1 +v2e2 +v3e3 =
(v1, v2, v3) where v1, v2, v3 ∈ R. Finally, note that there is nothing special about
R3 here and this could be generalized to any Rn containing n basis elements. This
can also be generalized to fields other than the real numbers and bases other than
the standard basis although these take a little more notation to avoid ambiguity.

2.2 Dual Spaces

Although it will not be clear for a little while why we are defining these dual vectors
and dual spaces, they become very important when we want to understand tensors in
more depth. For now all we need to know is that these odd types of objects exist and
are defined as follows.

Definition 2.2.1: Dual Space

The set, V ∗, of all linear maps f : V → F is called the dual space of V . It can
also be written as Hom(V,F) since it is the set of all linear homomorphisms from
V into R. Each of those maps f ∈ V ∗ is called a linear functional and these are
unsurprisingly linear objects: f(av+w) = af(v)+f(w) for all v, w ∈ V and a ∈ F.
Also, the set of such maps forms a vector space with its elements commonly called
dual vectors or covectors.

When V is finite dimensional, one can show that V ∗∗ is canonically isomorphic to V via
the evaluation map (i.e., ev : V → V ∗∗ where ev(v) : V ∗ → F is defined by
ev(v)(f) = f(v) for any f ∈ V ∗). Therefore, given f ∈ V ∗ and v ∈ V , one may consider
v as a double dual vector and thus f(v) can be view as v plugged into f or as f plugged
into v. To highlight this ambiguity we often write 〈f, v〉 for f(v). This dual pairing
notation puts vectors and dual vector (covectors) on more-or-less equal footing.
As the name of the elements of this dual space imply, there is a connection between
vectors and covectors. Suppose V is a finite dimensional vector space with dim(V ) = n.
Given a basis consisting of {ei | i = 1, . . . , n} for V then we can define a collection of
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dual vectors {θj | j = 1, . . . , n} as follows:

〈ei, θj〉 = 〈θj, ei〉 = ei(θ
j) = δji

where δij or δji is the Kronecker delta function and therefore equals 1 when i = j and 0
otherwise. It can be shown that {θj | j = 1, . . . , n} is a basis for V ∗. We call this the
basis dual to {ei | i = 1, . . . , n}, or briefly, a dual basis.
Given, v ∈ V and f ∈ V ∗ along with basis β = {e1, . . . , en} for V and dual basis
β∗ = {θ1, . . . , θn} for V ∗, we have v is a linear combination of the elements of β,
v = v1e1 + · · ·+ vnen and f is a linear combination of elements of β∗,
f = f1θ

1 + · · ·+ fnθ
n. If we have an understood basis, we will let vi denote these

coordinates for v and fj denote these coordinates for f . But what are coordinates?
Well it turns out that there has been some shady notation going on and we are just
ignoring some of the inconsistencies. Let us now more rigorously define what we mean
by coordinates and why we are writing things in the way we do. Consider a point in
Rn. Usually we would denote this as an n-tuple like (x1, x2, · · · , xn) where each of the
xi’s is a coordinate of that point. But, in other contexts we use these notations to
denote coordinate functions: xi : Rn → R defined as xi(p1, · · · , pn) = pi or
xi(p) = pi. Juxtaposing these notations we get something bizarre like xi(x) = xi where
xi is a coordinate function on the left and a coordinate/point on the right. We are
addressing this now not for the purpose of providing some beautiful notation that
solves these problems, but instead to say essentially “sorry, both notations are common,
deal with it”. Generally it should be clear from context what is meant by such a
coordinate function/coordinate expression, but we will try to avoid it nonetheless.
To those unfamiliar with Einstein notation and the differences between
covariant/contravariant components the previous section has been rather strange. To
address this we need to understand these notations better.
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Einstein Notation and Covariant/Contravariant Components

The above discussion uses superscripts commonly reserved for exponents and this
is not very intuitive upon first sight, but rest assured it is for a good reason. If
we consider changing the basis for a vector we find that the basis elements of that
vector transform like basis covectors, that is, contravariantly or ”against the basis”
of the vector space. Conversely, if we preform a change of basis for a covector
we see that the components of the covector transform like the vector space basis
elements, that is, covariantly or ”with the basis” of the vector space. As such this
paper will use lower indices to denote contravariant components for vectors like ei
and upper indices to denote covariant components for covectors like θj. While this
is useful in understanding vectors and covectors under a change of basis, the true
power of this notation is how it allows us to interpret expressions. Not only does
this notation make it much easier to identify whether something is in the vector
space or the dual space, it also pairs very nicely with Einstein notation. Due to the
vast number of complicated summations associated with tensors Einstein notation
is commonly used to greatly simplify equations. The main idea of Einstein notation
is that when the same index shows up more than once in any term of a sum, the
sum is implied so the symbol may be omitted. An example of this is, imagine we
want to compute f(v) where f ∈ V ∗ and v ∈ V . This expression can then be
written as we usually see it using a summation:

f(v) =
n∑
j=1

n∑
i=1

fjv
i

Or it could be written in Einstein notation using f = fjθ
j, v = viei, and θj(ei) = δji :

f(v) = fjθ
j(viei) = fjv

iθj(ei) = fjv
iδji = fiv

i
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3 Tensors

Tensors are fundamentally multilinear objects meaning that they are linear in multiple
“slots”. They also have many possible representations giving them some serious
versatility in uses including as tensor products, multilinear maps, and arrays among
other representations. Their wide use throughout much of physics, especially in
discussions about relativity and manifolds, makes them thoroughly worth studying.

3.1 Basic Definitions

In the basic description of tensors they are essentially an expanded and “higher
dimensional” version of vectors although they don’t have to be higher dimensional since
technically vectors are “1-tensors” and scalars are “0-tensors”. To better understand
the basics of tensors here is a definite example of working with tensors and their
different forms.

Example 3.1.1

Imagine we want to deal with tensors of the form v ⊗ w ∈ R2 ⊗ R3. If we assume
that the canonical bases of R2 and R3 are {e1, e2} and {e1, e2, e3} respectively then
the basis for this vector space, R2 ⊗ R3, is

β = {e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3, e2 ⊗ e2, e2 ⊗ e3, e3 ⊗ e3}

which includes all combinations of the original basis elements of R2 and R3. Taking
an arbitrary element from this space, called a 2-tensor or tensor of order two
because it is the tensor product of two vectors, we can demonstrate how it exhibits
multilinearity by showing the linear property it has in its first vector:

(3, 2)⊗ (1, 2, 3) = 3(1, 0)⊗ (1, 2, 3) + 2(0, 1)⊗ (1, 2, 3)

Similarly these pieces can be expanded in the second vector slot and this actually
shows what the tensor looks like in terms of its basis elements:

(3, 2)⊗ (1, 2, 3) = 3e1 ⊗ e1 + 6e1 ⊗ e2 + 9e1 ⊗ e3 + 2e2 ⊗ e1 + 4e2 ⊗ e2 + 6e2 ⊗ e3

From here is should be fairly apparent how tensors like this can be expressed as
indexed arrays similar to matrices:

(3, 2)⊗ (1, 2, 3) =

[
3 6 9
2 4 6

]
In general the multilinear property looks like:

T (v1, ..., av + w, ..., vn) = aT (v1, ..., v, ..., vn) + T (v1, ..., w, ..., vn)

Where T is a multilinear map from vector spaces V1, · · · , Vn to the vector space
W , a is a constant, and v, w ∈ Vi.
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While this is a useful example it is not a substitute for definitions and properties so
listed below are a few properties of tensors. Given tensors R with order r, S and T
with order s, and constants α and β we can write:

� The set of all tensors R = ∪rRr forms an Algebra

� The tensor R⊗ S has order r + s

� The expression αS + βT is a tensor of order s

� Tensors are associative but not commutative

� Some rearranging and distributive laws hold:

1. T ⊗ (αS) = (αT )⊗ S = α(T ⊗ S)

2. R⊗ (S + T ) = R⊗ S +R⊗ T
3. (S + T )⊗R = S ⊗R + T ⊗R

The main downside to a representation like Example 2.1.1 is that it obscures how
tensors are basis independent. Another way we can think about tensors is as a
multilinear map satisfying a universal property:

Definition 3.1.1: Tensors

Given vector spaces V1, V2, · · · , Vn and a multilinear map T : V1×V2×· · ·×Vn → W
mapping to a vector space W then there exists a unique linear map
T̂ : V1 ⊗ V2 ⊗ · · · ⊗ Vn → W such that T (V1, V2, · · · , Vn) = T̂ (V1 ⊗ V2 ⊗ · · · ⊗ Vn).
Multilinear mapping objects of this form, V1 ⊗ V2 ⊗ · · · ⊗ Vn, are called tensors.
Consider this statement represented in the diagram below:

V1 × V2 × · · · × Vn

⊗

V1 ⊗ V2 ⊗ · · · ⊗ Vn

W
T

T̂

Multilinear Linear

3.2 General Tensors

While the above discussions of tensors are useful in understanding tensors to some
extent, modifications need to be made in order to also include dual objects.

11



Definition 3.2.1: General Tensors

A general tensor consists of contravariant and covariant pieces combined through
a tensor product. Take a vector space V with basis {ei} and its dual space V ∗ with
basis {θj} then a general (r, s)-tensor will have the form:

T = T i1i2···irj1j2···jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ θ
j1 ⊗ θj2 ⊗ · · · ⊗ θjs

Note that this is using Einstein summation notation and has excluded the summa-
tion symbol. These tensors belong to a tensor product space that looks like:

T rs = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s times

= V ⊗r ⊗ (V ∗)⊗s

These tensors actually give us a wide range of possible representations depending on
how we want to represent them. The following example will show how tensors can be
thought of as many different maps.

Example 3.2.1

Consider the mapping T : V ⊗ V ⊗ V ∗ → R. This is a (2,1)-tensor with elements
of the form v ⊗ w ⊗ f but we could instead leave one or more “slots” open and
change how this tensor maps objects. If we plug in v ⊗ w, leaving open the dual
vector slot, we would instead get the mapping T (v, w, ·) which takes in a dual
vector and kicks out a scalar, so T : V ⊗ V → V ∗∗. Identifying V ∗∗ and V makes
this the map T : V ⊗ V → V . In coordinates, T kijv

iwj looks like a vector (note the
hanging upper index k). But this is not the only possibility, in fact there are quite
a few interpretations for our tensor T :

T : V ⊗ V ⊗ V ∗ → R T : V ⊗ V → V T : V ⊗ V ∗ → V ∗

T : V → V ⊗ V ∗ T : V ∗ → V ∗ ⊗ V ∗ T ∈ V ∗ ⊗ V ∗ ⊗ V

For greater detail on “mixed” tensors see T. Frankel’s “The Geometry of Physics”
section 2.4c [F].
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4 Manifolds

In order to extend the use of powerful calculus tools to more complicated objects we
need to discuss manifolds. Manifolds allow us to consider complicated objects made
from pieces of Rn by giving us a way to break them down and understand the simpler
pieces involved. Yet manifolds are inherently topological and we need to have some
basis in topology in order to full fully explore manifolds.

4.1 Topology

Topology takes sets of points and gives them some form of geometrically inspired
“rules” allowing us to study properties that are inherent to the set. A topology on a set
tells us which subsets of this set are open, or belong in the topology. Much of the
information in this section comes from chapter 2 of [M].

Definition 4.1.1: Topology

A topology T on a set X consists of all subsets of X which are open. Open sets
satisfy the following three conditions:

1. The full set, X, and the empty set, ∅, are both open sets

2. Arbitrary unions of open sets are open

3. Finite intersections of open sets are open

A set X endowed with the topology T is called a topological space.

In addition to open sets, sets belonging to our topological space, we can also have
closed sets defined as the compliments of open sets. More formally, given open set
U ⊂ X then the compliment of U in X, written X − U , is a closed set. It is important
to note that open and closed sets do not work like the English interpretation of those
words imply: Topological sets are not like doors, they can be open, closed, both, or
neither. In addition to the basic definition of a topology we will also need to define a
Hausdorff space.

Definition 4.1.2: Hausdorff

A Hausdorff space, X, is a topological space in which, for every x, y ∈ X with
x 6= y, there exist open sets U, V ⊂ X such that x ∈ U , y ∈ V , and U ∩ V = ∅.
Less formally this means that any two points can be separated by disjoint open
neighborhoods. Hausdorff imposes an intrinsic notion of separation between points
in a set.
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At this point we should probably look at an example:

Example 4.1.1

Consider Rn with the standard topology that is inherited from its structure as a
metric space. A set U ⊆ Rn is open if and only if for every p ∈ U there is some
ε > 0 such that the ball Bε(p) = {x ∈ Rn | distance(x, p) < ε} ⊆ U . In other
words, for every point p in U there is some neighborhood of points around p that
are also in U . If we want to understand this more intuitively let us look at R2:

y

x

p1
ε1

U

p2, ε2

V

Note that U is an open set because every point we choose has an open neigh-
borhood (p1 and p2 are included to illustrate this) but V is not open because
it includes a part of the boundary and none of those points can have an open
neighborhood completely in V .

For a much more in depth discussion of topology see [M]. In addition to the extra
details and background provided therein, Munkres also includes numerous excellent
diagrams to illustrate topological concepts.

4.2 Topological Manifolds

With this basis in topology we can move on to discussing manifolds using our
knowledge of topology to guide us. Before defining a topological manifold we need to
first define “locally Euclidean”.
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Definition 4.2.1: Locally Euclidean

A space X is locally Euclidean if every point in the space has an open neighbor-
hood (i.e., an open set containing that point) surrounding it and that neighborhood
is homeomorphic to an open subset of Rn for some fixed n. This is not entirely
clear without also knowing the definition of homeomorphic so for clarity: Take two
topological spaces A and B with a bijective function f : A→ B. If both f : A→ B
and f−1 : B → A are continuous then f is a homeomorphism between A and B.
We could also say that A and B are homeomorphic spaces. It should also be noted,
since this will be important later, that homeomorphisms preserve all topological
properties.
Note for clarity: A mapping f : X → Y is continuous if the inverse image of an
open set is also open, that is, given an open set V ⊆ Y then f−1(V ) = U ⊂ X is
open in X.

Let us take a moment to consider the consequences of a space being locally Euclidean.
The definition of locally Euclidean says that a space is locally Euclidean if at any point
we choose to look at in the space, when we “zoom in” far enough it will be totally
indistinguishable from a point simply sitting in Rn.

Definition 4.2.2: Topological Manifold

A topological manifold is a set X that is a locally Euclidean, Hausdorff space.
This means that for every p, q ∈ X there exist open subsets P and Q of X such that
p ∈ P , q ∈ Q, and P ∩ Q = ∅. Additionally, the continuous, invertible mapping
f exists such that f : U → f(U) ⊂ Rn for some open subset U ⊆ X and f−1 is
continuous.

Included below are a couple of examples and/or non-examples of topological manifolds.
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Example 4.2.1

Examples (a): Topological manifolds can be simple closed curves like a circle or
ellipse since these are locally Euclidean at every point, homeomorphic to R.
Example (b): On the other hand a non-example could be something like a figure-
8 or an infinity symbol which each have a point, the crossing, at which it does not
behave like a copy of Rn.

X Topological ManifoldX Topological Manifold

Example (c): Another example of a topological manifold, this time two dimen-
sional, would be a cone. We can see the homeomorphism between the cone R2 by
simply projecting it directly onto a plane that is normal to the axis of the cone.
Note that although this is a topological manifold it is not a smooth manifold since
the vertex is not differentiable. This will be discussed in more detail in the next
section.

While these are useful definitions and notions of manifolds, we will need something
stronger if we want to apply the tools of calculus to manifolds. For a much more
detailed discussion of topological manifolds see [LEE].

4.3 Differentiable Manifolds

In this section we will explore manifolds on which we can use calculus and start getting
some powerful results. First though we need to define a smooth manifold and in order
to do that we will need a couple more definitions.

Definition 4.3.1: Smooth Map

A function f : U ⊂ Rn → R is smooth, also notated “of class C∞”, if it is infinitely
differentiable in each component. This could be rephrased as f is smooth if

∂kf

∂xi1 · · · ∂xik

exists and is continuous for all k and every combination of (i1, · · · , ik).
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Definition 4.3.2: Diffeomorphism

A function f is a diffeomorphism if it is a homeomorphism with the added
condition that both f and f−1 are smooth. Note that this will be necessary when
we go to do calculus later.

A good discussion of smooth maps and diffeomorphisms can be found in J. Lee’s
“Manifolds and Differential Geometry” section 1.4 [LEE]. With these definitions we can
now explore what it means to be a smooth manifold.

Definition 4.3.3: Smooth Manifolds

Similarly to the notion of a topological manifold is that of a (smooth) manifold.
Such a manifold, M, is a Hausdorff topological space and contains a countable
collection of patches, open sets {Ui} that cover the manifold. Additionally, there
must be a set of coordinate maps {φi} satisfying the following two conditions.

1. Locally Euclidean: Each φi : Ui → φi(Ui) ⊆ Rn is a homeomorphism from an
open subset of M onto an open subset of Rn.

2. Compatible on overlaps : If Ui and Uj are two overlapping coordinate patches,
that is Ui ∩ Uj 6= ∅, with associated coordinate maps φi and φj then the
mapping φj ◦ φ−1i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) is a diffeomorphism.

Note that if we replaced diffeomorphism with homeomorphism in this definition then
we would fall back on a definition for a topological manifold. This illustrates the
important step we took in defining a smooth manifold: Just being a manifold is not
sufficient, we also need the manifold to be smooth or differentiable so that it works well
with calculus. Before proceeding to discuss this definition it could be helpful to have a
picture of what is going on (see Figure 1 below).
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M

Ui UjUi ∩ Uj

φi(Ui) φj(Uj)

φi φj

φi(Ui ∩ Uj) φj(Ui ∩ Uj)

φj ◦ φ−1i

Figure 1: The function that maps between φi(Ui ∩Uj) and φj(Ui ∩Uj)
is a diffeomorphism. This shows that regardless of what happens to
these sets when they get mapped from M to Rn their overlap must

still act correctly and map easily from one to the other.

We should probably also discuss how we can map between manifolds.

Definition 4.3.4: Smooth Mapping Between Manifolds

Consider manifolds M of dimension m and N of dimension n. The mapping F :
M → N is a smooth mapping between manifolds if F is smooth when represented
in coordinates. Specifically, given patches φ : U → φ(U) on M and ψ : V → ψ(V )
on N with F (U) ∩ V 6= ∅ we have that

ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V ))→ ψ(F (U) ∩ V )

is smooth and maps from a subset of Rm to a subset of Rn.

As a result of the definition of a smooth manifold we can see that the identity map for
such a manifold id : M →M must also be smooth. In addition to the definitions given
above there are a couple more terms we should define. When we pair a patch with a
coordinate map we get a coordinate chart such as (Ui, φi). Also, using an
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exceptionally appropriate notation we say that the collection of all coordinate charts is
called an atlas. To better understand these concepts we should go over a few examples.

Example 4.3.1

Consider the manifold R2. Note that this is a manifold because R2 is (assuming as
is common that we are using the standard topology) a Hausdorff topological space,
it is clearly locally Euclidean everywhere, and it is compatible on overlaps. We can
cover this manifold with only one patch, R2 itself, and use the identity coordinate
map. That means the coordinate chart (R, idR2) is all we need to describe this
manifold.
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Example 4.3.2

In this example we want to prove that S1 = {(x, y)|x2 + y2 = 1}, the unit circle, is
a smooth manifold. To do this we need to show that it satisfies all of the properties
in our definition of a smooth manifold. We can fairly easily see that this is both
Hausdorff and locally Euclidean because each open subset of S1 can be mapped
onto an open subset of R. Showing that it is compatible on overlaps is slightly more
difficult and we will need to define the coordinate charts first. Although there are
more efficient ways to assign coordinate chartsi in this example we will use the
four charts defined below:

φ+
x : U+

x = {(x, y)|x2 + y2 = 1, y > 0} → R as φ+
x (x, y) = x

φ−x : U−x = {(x, y)|x2 + y2 = 1, y < 0} → R as φ−x (x, y) = x

φ+
y : U+

y = {(x, y)|x2 + y2 = 1, x > 0} → R as φ+
y (x, y) = y

φ−y : U−y = {(x, y)|x2 + y2 = 1, x < 0} → R as φ−y (x, y) = y

These will map the top, bottom, left, and right halves (excluding the endpoints
of each arc) onto the axes showing a homeomorphism between these chunks and
sections of the real line. A diagram of these sections (in a semi-”exploded” view)
is provided for reference:

φ−yR

Example mapping

.

The red curves are
the positive and nega-
tive halves of the cir-
cle that get mapped
onto the y-axis while
the blue curves are
the same for the x-
axis. The purple curve
shows the overlap of
φ+
x and φ+

y .

In order to check that this is compatible on overlaps we need to check each pair of
mappings that overlap although we will only show one of the four since they are
very repetitive. For the overlap U+

x ∩ U+
y = {(x, y)|x2 + y2 = 1, x > 0, y > 0} we

will use (φ+
x ) ◦ (φ+

y )−1 : φ+
y (U+

x ∩ U+
y ) → φ+

x (U+
x ∩ U+

y ) to map between these and
show that it is a diffeomorphism.

(φ+
x ) ◦ (φ+

y )−1(y) = φ+
x

(√
1− x2, y

)
=
√

1− x2

Note that, given the domain restrictions inherent to this overlap, we have found
a perfectly valid diffeomorphism meaning this overlap is compatible. We get the
same result with varying combinations of negatives for the other three overlaps.
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ii One type of example we have not looked at yet is what happens if we have higher
dimensional manifolds. Given the detail in the last example it should be sufficient to
merely sketch out the process for a higher dimensional manifold without going into too
much detail.

Example 4.3.3

Consider the unit sphere S2 = {(x, y, z)|x2 + y2 + z2 = 1}. As with the previous
example we can see that this set is Hausdorff and locally Euclidean. If we define
coordinate charts in a similar way to the previous example we get very similar
results although this time we need six coordinate charts instead of four. In this
case we are projecting half spheres onto the x, y, and z planes as opposed to
projecting half circles onto the x and y axes.

φ+
xy : U+

xy = {(x, y, z)|x2 + y2 + z2 = 1, z > 0} → R2 as φ+
xy(x, y, z) = (x, y)

...
...

...

φ−yz : U−yz = {(x, y, z)|x2 + y2 + z2 = 1, x < 0} → R2 as φ−yz(x, y, z) = (y, z)

We will check one of the 12 overlaps to verify that compatibility holds. Arbitrarily
let us choose φ+

xy and φ−yz which overlap on the region U+
xy ∩ U−yz = {(x, y, z)|x2 +

y2 + z2 = 1, z > 0, x < 0}.(
φ+
xy

)
◦
(
φ−yz
)−1

: φ−yz(U
+
xy ∩ U−yz)→ φ+

xy(U
+
xy ∩ U−yz)

↓(
φ+
xy

)
◦
(
φ−yz
)−1

(y, z) = φ+
xy

(
−
√

1− y2 − z2, y, z
)

=
(
−
√

1− y2 − z2, y
)

Note that while this is restricted to the specified domain it is a diffeomorphism so
these overlaps can work together although this is not quite all. In a little while we
will discuss compatibility of orientation and show that these charts just need one
small tweak to be totally correct.

Although this does allow us to check that something is a manifold, as should be
apparent from these last example this process can get long and tedious so it would be
nice if there was a better way. Fortunately there is a better way to do this, but we will
need a handful of extra definitions to do it. First note that when we talk about local
coordinates we mean coordinated defined by a diffeomorphism f such that the following
holds.

f : U → f(U) ⊂ Rm where p 7→ (x1, . . . , xm)

iittttti In fact, we could use just two coordinate charts each just leaving out one point. If we are only
concerned with integration over our manifold, we could actually use just one coordinate chart. This is
because points are boundaries for a 1-dimensional manifold and as will be discussed later the boundary,
since it is lower dimensional, does not contribute to integrals and can for those purposes be omitted.

21



What this basically says is that we are defining coordinates in a locally Euclidean patch
near some point.

Definition 4.3.5: Immersions and Embeddings

Consider smooth manifolds M with dimension m and N with dimension n. Let
f : M → N be a smooth map represented in local coordinates as:

f(x1, · · · , xm) = (f 1(x1, · · · , xm), · · · , fn(x1, · · · , xm))

Using bad notation this will often be written as:

f(x1, · · · , xm) = (y1(x1, · · · , xm), · · · , yn(x1, · · · , xm)) = (y1, · · · , yn)

Now if the Jacobian matrix of this transformation, Df(x) = (∂f i/∂xj) or just
(∂yi/∂xj) using sloppy notation, has maximal rank at p ∈M there are two cases.

1. If m ≤ n then the rank of the Jacobian is m and f is called an immersion
at p

2. If n ≤ m then the rank of the Jacobian is n and f is called a submersion
at p

Additionally, we have a couple other definitions that follow this including: If f is
an immersion for all p ∈M then M is an immersed submanifold of N . If f is an
immersion and it is injective then it is called an embedding.

These definitions lead straight into two very important theorems, the first of which is
the Whitney embedding theorem, see [R] or for a much more nuanced and deep
discussion see [Sk] section 2.

The Whitney Embedding Theorem

The Whitney embedding theorem states that any n-dimensional topological man-
ifold can be embedded in R2n+1 and any n-dimensional smooth manifold can be
embedded in R2n.

One of the main positives to this theorem is that it allows us to embed a complicated
manifold in some Rk space that is more familiar and easier to work in. Before moving
on to the next big theorem we should define a couple more terms.
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Definition 4.3.6: Regular and Critical Points

Suppose we have a mapping f : M → N where m ≥ n. If f is a submersion at
p ∈M then p is a regular point of f . If p is not a regular point of f then we call
it a critical point. Given some point q ∈ N , if every point in f−1(q), the fiber
over q, is a regular point (meaning any point that maps to q must be regular) then
we call q a regular value.

The Regular Value Theorem

Again consider the map f : M → N between manifolds of dimension m and
n respectively. Let q ∈ N be a regular value of f . Then f−1(q) is a smooth
embedded submanifold of M with dimension m− n.
(See [R] for a proof)

With this theorem we can now easily determine whether something is a manifold or
not. To show this let us revisit the example where we attempted to show that a circle is
a manifold.

Example 4.3.4

In order to apply this theorem we will need a mapping between manifolds. Since
we know that all Rn are manifolds let us define our mapping as f : R2 → R where
f(x, y) = x2 + y2. Note that the Jacobian matrix, Df = 〈2x, 2y〉, has the maximal
possible rank of 1 and can not be zero unless (x, y) = (0, 0). This implies that the
mapping is a submersion regardless of the point we choose. Now let us look at the
fiber over 1: f−1(1) = {(x, y)|x2 + y2 = 1}. As stated previously each p ∈ R2 must
be a regular point therefore every point in f−1(1) must be regular so 1 ∈ N is a
regular value. Finally, by the regular value theorem it must then be the case that
f−1(1) = {(x, y)|x2 + y2 = 1} = S1 must be a smooth embedded submanifold of
R2 with dimension 1.

And that was clearly much easier than previous methods of establishing if something is
a manifold. This method can be used on many of the objects we want to study and its
simplicity should be admired since at the heart of the matter all we really did was check
that the Jacobian matrix behaved correctly then we got, almost for free, the result that
the level surface we wanted to study was a manifold.
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5 Tangents

Now that we have some basic understanding of manifolds one of the next logical
directions to proceed if we want to end up doing calculus is to study tangents to
manifolds. Not just tangents though, we also want to study the spaces they make up,
the bundles formed by all of the tangent spaces, dual spaces, and how these tangent
ideas build towards our next topics.

5.1 Tangent Spaces

In order to study tangents we will need to understand tangent spaces. The first thing
to recognize about tangent spaces is that we can think about them from multiple useful
perspectives. The first, and less formal, perspective we will consider is heavily based on
coordinates to define a basis for the tangent space. The main definition will be given in
part 2 when we talk about the more “official” perspective on tangent spaces.

1. Let (φ, U) be a patch on manifold M with point p ∈ U .

Assume φ : U → Rn where φ(p) = (x1(p), · · · , xn(p))

Then we will define a basis set for the tangent space at p as the set:{
∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xm

∣∣∣∣
p

}
where span

{
∂

∂x1

∣∣∣∣
p

, · · · , ∂

∂xm

∣∣∣∣
p

}
= TpM

And any Xp ∈ TpM can be written as:

Xp =
∑
i

X i ∂

∂xi

∣∣∣∣
p

Where each X i is a scalar and the ∂/∂xi component of Xp. Further, if we have
another valid basis for TpM using some coordinates ∂/∂yj then we can use the
chain rule to give us:

∂

∂yj
=
∑
i

∂xi

∂yj
∂

∂xi
→ Y j =

∑
i

X i∂y
j

∂xi

∣∣∣∣∣
p

Each ∂yj/∂xi is given by the change of coordinates matrix. These more
coordinate heavy notations will be more useful later when we discuss the dual
space of a tangent space.

2. Before we get to dual spaces let us switch to talking about the second perspective
and more formal definition of tangent spaces. This perspective is based on
algebraic properties and it requires the introduce of linear derivations. Note that
Ω0(M) = {f : M → R | f is smooth} is the space of smooth scalar valued
functions, these are sometimes called test functions.
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Definition 5.1.1: Tangent Spaces

Let M be a manifold with dimension m. The tangent space to M at p is a vector
space written as TpM . The elements of this space, Xp, are called tangent vectors
and Xp ∈ TpM if and only if Xp is a linear derivation at p. Linear derivations
essentially capture our basic intuitions about derivatives but in a more general way.
To elaborate on this take a, b ∈ F and f, g ∈ Ω0(M) then Xp : Ω0(M)→ R satisfies
the following conditions.

1. Linearity: Xp(af + bg) = aXp(f) + bXp(g)

2. The Leibniz property: Xp(fg) = g(p)Xp(f) + f(p)Xp(g)

Notice that, given a patch (U, φ), if f, g ∈ Ω0(M), then

∂

∂xi

∣∣∣∣
p

[
f
]

=
∂

∂xi

[
f ◦ φ−1(x1, . . . , xn)

] ∣∣∣∣∣
φ(p)

In other words,
∂

∂xi

∣∣∣∣
p

(f) is the partial derivative of the coordinate version of f

with respect to the i-th coordinate and evaluated at the coordinates of the point
p. In particular, this is linear and

∂

∂xi

∣∣∣∣
p

[
fg
]

=
∂f

∂xi

∣∣∣∣
p

· g(p) + f(p) · ∂g
∂xi

∣∣∣∣
p

the Leibniz property holds by the standard product rule. Thus
∂

∂xi

∣∣∣∣
p

is in fact a

linear derivation at p. In other words, our tentative tangent vector at p is an
official tangent vector at p.

3. For now let us again switch directions and consider a third approach to viewing
tangent spaces. This last view of tangent spaces in more geometric in nature and
revolves around equivalence classes of curves. Let α and β be two smooth
mappings from (−1, 1) to M . Also, let U, V ⊂M with charts φ mapping to xi

coordinates and χ mapping to yi coordinates such that α(0) = β(0) = p ∈ U ∩ V .
An interesting definition of the type of equivalence class we are attempting to
understand is given in [LEE]. He states that an equivalence relation on the set Γp
of all triplesii (p, v, (U, x)) can be defined by requiring that
(p, v, (U, x)) ∼ (p, w, (V, y)) if and only if

w = D
(
y ◦ x−1

)∣∣
x(p)
· v

ii This notation is a bit different from what has been used previously in this paper so I will break
it apart a little: This triple tells us that we are dealing with a tangent v at point p represented in the
coordinates from the chart (U, x) which takes the set U ⊂M and maps it as x : M → Rn
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Which means that two tangent vectors, v and w, are equivalent if they can be
related by the derivative at x(p) of the coordinate change y ◦ x−1 between the
coordinates of the two charts. More discussion on tangent spaces can be found in
[R] chapter 3. Basically, in this third viewpoint, tangents at p are seen as
equivalence classes of curves on our manifold that pass through p. This
equivalence codifies the idea of curves being tangent to each other.

5.2 The Tangent Bundle

At this point one of the next logical questions is, since we have a tangent space at every
point in the manifold, can we put these all together in some meaningful way? The
answer is yes, the collection of all tangent vectors at every point in M gives us the
tangent bundle. If the dimension of M is m then objects in the tangent bundle can
be described by 2m-tuples. Pick a chart (U, φ) where φ(p) = (x1(p), . . . , xm(p)) and the
xi are coordinate functions for φ. Then if Xp ∈ TpM , we have

Xp = X i ∂

∂xi

∣∣∣∣
p

Thus we can encode Xp in coordinates via (x1(p), . . . , xm(p), X1, . . . , Xm). Conversely,
any 2m-tuple whose first m coordinates are given by φ(p) and last m coordinates come
from a random vector v = 〈v1, . . . , vm〉 i.e. (φ(p),v) = (x1(p), . . . , xm(p), v1, . . . , vm),
defines an element of TpM namely

Xp = vi
∂

∂xi

∣∣∣∣
p

More formally we can define tangent bundles as follows:

Definition 5.2.1: Tangent Bundle

If we have a smooth manifold M and a tangent space TpM at every point p ∈ M
then we can build the tangent bundle, denoted TM , by taking the disjoint union
of all possible tangent spaces or by unioning the tangent spaces at each distinct
point.

TM =
⋃̇
p∈M

TpM =
⋃
p∈M

{p} × TpM

Now consider the nature of this space. The first m coordinates are from p ∈ U ⊂M but
recognize that we have a smooth manifold so this must be locally Euclidean hence
U ⊂ Rm. This means that p ∈ Rm. We also have v ∈ Rm so a coordinate patch of this
tangent bundle looks like (U ⊂ Rm)×Rm ⊂ R2m and it can be shown (see [F]) that this
is a 2m−dimensional differentiable manifold. Since the tangent bundle is a manifold
there are a few interesting things about it that we should investigate.
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a

b

Figure 2: (a) is a diagram from [F] showing the tangent bundle and
some of the ways in which we can interpret its facets. (b) is a similar

diagram from [R] using slightly different notation (although this is
actually a diagram from the vector bundle section).
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First, it makes sense to define a projection back onto our original manifold.

π : TM →M defined as π(p,v) = p

Note: One can show that π is a smooth map from TM to M . For convenience of
notation such a bundle is often written as a 4-tuple: (TM,M,Rm, π). This just
summarizes its important characteristics in a concise way. If we instead go backwards
from this projection mapping we get π−1(p) = {(p,Xp) ∈ TM | π(p,Xp) = p} = TpM .
This is a copy of Rm, which we call the fiber over p. Suppose one selects a vector Xp

for each p ∈M and does so in a smooth way. In other words, X : M → TM where
p 7→ (p,Xp) is a smooth map between M and TM (although we will identify {p}× TpM
with TpM hereafter for ease of notation). We call such maps vector fields. Notice that
π ◦X = idM since X assigns a point a vector and then π immediately removes the
vector taking us back to the original point in M . This is called a section of the tangent
bundle TM . Figure 2 shows graphical/geometric interpretations of some of these
concepts from both [F] and [R].

5.3 Cotangent Spaces and More Bundles

Just as we discussed the dual to a vector space earlier, we can also have the dual to a
tangent space. The dual space to TpM is denoted T ∗pM and is usually called the
cotangent space at p. The elements of the cotangent space are called cotangent vectors
and, similarly to what dual vectors did, these cotangent vectors provide a linear
mapping between T ∗pM and R. Also, the bases behave in a way comparable to the
vector/dual vector space bases. That is, given the basis{

∂

∂xi

∣∣∣∣
p

∣∣∣∣∣ i = 1, . . . ,m

}

for TpM we can define the (dual) basis for T ∗pM as {dpxi} where〈
dpx

j,
∂

∂xi

∣∣∣∣
p

〉
=

〈
∂

∂xi

∣∣∣∣
p

, dpx
j

〉
= dpx

j

(
∂

∂xi

∣∣∣∣
p

)
= δji

Recall that given f ∈ V ∗ and v ∈ V , 〈f, v〉 = 〈v, f〉 = f(v) is the dual pairing between
V and V ∗ and just means that we plug v into the dual vector, a scalar valued linear
map, f : V → R. This is exactly what we used when discussing dual vector spaces, the
elements of the dual basis pick out the corresponding element of the regular basis and
leave everything else as zero. Note that these basis elements are differential operators
and so we will call a general element of this space a differential form. In coordinates,
αp ∈ T ∗pM is αp = ai(p) dpx

i. Suppose we smoothly assign a dual vector to each point in
our manifold. Say, α : M → T ∗M is smooth where α(p) = αp ∈ T ∗M and T ∗M is the
cotangent bundle defined much like the tangent bundle. Then α is a section of the
cotangent bundle and we call it a differential 1-form. Although it won’t be discussed in
any detail yet we define a differential k-form as a smooth assignment of an element of
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∧k(T ∗pM) to each p ∈M .
To finish off this section I want to talk about bundles just a little more. First, since we
just discussed cotangent spaces we should mention cotangent bundles. Due to being
very similar to tangent bundles we won’t say that much about cotangent bundles, but
here is a basic sketch. We can essentially change the definitions for a tangent bundle to
use cotangent vectors and cotangent spaces to arrive at a reasonable definition of
cotangent bundles. Something like:

Definition 5.3.1: Cotangent Bundle

If we have a smooth manifold M and a cotangent space T ∗pM at every point p ∈M
then we can build the cotangent bundle, denoted T ∗M , by taking the disjoint
union of all possible cotangent spaces or by unioning the cotangent spaces at each
distinct point.

T ∗M =
⋃̇
p∈M

T ∗pM =
⋃
p∈M

{p} × T ∗pM

All of the other definitions translate accordingly including projections, fibers, sections,
etc. Now let us move on for now and discuss general vector bundles.
Similarly to tangent bundles and cotangent bundles, we define a vector bundle as
follows using the notations from [R].

Definition 5.3.2: Vector Bundle

A vector bundle, E, over a manifold M has the projection map π : E →M and
must satisfy three axioms:

1. Fiber isomorphism: Each fiber π−1(p) with p ∈M is isomorphic to the vector
space Y of dimension m.

2. E is a product (locally): Consider the manifold E. For all p ∈ M there is
some neighborhood U containing p and a diffeomorphism

φU : π−1(U)→ U × Y

Where Y is the fixed vector space from the first axiom. This mapping is
called a local trivialization of E over U .

3. φU carries fibers to fibers linearly : Noting that φU : π−1(p)→ π−11 (p) is linear
for all p, we can also say that the map π1 : U × Y → U is a projection onto
the first element such that (p, f) 7→ p.

As with previous mentions of bundles we will denote a vector bundle with the
4-tuple (E,M, Y, π), notice also that E is a manifold as it (the bundle space) was
for tangent bundles. See Figure 2b for the corresponding diagram from [R].
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Vector bundles smoothly assign a vector space to every point in M . We can now see
that the tangent bundle and cotangent bundle were special cases of vector bundles
where these vector spaces were the tangent or cotangent space at every point. In the
interest of time we won’t spend any longer on vector bundles, although [R] has a good
discussion of them in chapter 7. For now let us continue by talking about a
generalization of both vector and covector fields, namely tensor fields. These will yield
a new family of examples of vector bundles.

5.4 Tensor Fields

Recall from our first discussion of tensors that a tensor can be expressed as a
multilinear map or as an element of a tensor product space. In this section we will
revisit both of these ideas and connect them to some of the concepts we discussed
concerning tangent spaces and cotangent spaces. At its heart a tensor field is simply a
smooth assignment of a tensor to every point of M . The complexity comes when we try
to express the tensors since the choice of how to express the tensors, along with actually
expressing them, has implications on the tensor field.

Tensor product space
The tensor product space interpretation, as discussed in the tensor section, is much
more coordinate heavy so we will start by giving the standard setup: Let M be a
manifold with patch U using local coordinates x1, x2, · · · , xm. For any point p ∈ U we
can consider the vector fields ∂/∂xi and 1-form fields dxi as being the bases of the
tangent space and cotangent space at that point. Putting everything together in a
similar way to the general tensors discussed earlier we can create a basis (valid when
working with points p ∈ U) for the tensor field from basis elements of the form:

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

These form a basis for the tensor product space (TpM)⊗r ⊗ (T ∗pM)⊗s where the
elements look (locally in coordinates) like:

Ψ = Ψi1···ir
j1···js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs

Just as we had “tensors of type (r, s)” in this case we have a tensor field Ψ of type
(r, s).

As multilinear maps
Following along with the discussion in [R] chapter 3 let T̃ rs (p) be the space of every
multilinear map on:

T ∗pM × · · · × T ∗pM︸ ︷︷ ︸
r times

×TpM × · · · × TpM︸ ︷︷ ︸
s times
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Recall that mapping multilinearly takes objects with some number of “slots” and maps
to an object with a different number of “slots”. Last time we saw this we mapped n
vectors to a single tensor. In this case we are creating a tensor field of type (r, s) by
smoothly assigning an element Ψp ∈ T̃ rs (p) for each p ∈M . Note that smooth means for
any smooth covector fields α1, · · · , αr and smooth vector fields X1, · · · , Xs near p then
the map

p 7→ Ψp(α1(p), · · · , αr(p), X1(p), · · · , Xs(p))

is also smooth. Alternatively, smooth means that all component functions Ψi1···ir
j1...js

are
smooth functions (for an arbitrary choice of coordinates). Upon considering these
definitions more carefully we find that not only do we have that Ψ is multilinear, we
actually have a stronger case that it is function linear. Function linear involves
modifying the definition of multilinear, the heart of which given here,

Ψ(v1, · · · , au+ bw, · · · , vr+s) = aΨ(v1, · · · , u, · · · , vr+s) + bΨ(v1, · · · , w, · · · , vr+s)

to replace a and b, which had previously been scalars, with smooth functions.
Summarizing this:

Definition 5.4.1: Tensor Fields

First, let Γ(TM) denote the space of all vector fields on M and likewise Γ(T ∗M)
denotes the space of all covector fields on M . Then a tensor field Ψ of type
(r, s) is a function multilinear map given by:

Ψ : Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r times

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s times

→ R

There is a proof of this for the specific case of only vector fields (so r = 0) in [R]

Before leaving this section, we can define a differential k-form ω to be an alternating
tensor field of type (0, k). In particular,

ω : Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
k times

→ R

is k-multilinear and alternating meaning ω(X1, . . . , Xk) = 0 anytime that Xi = Xj for
some i 6= j (i.e., we have a repeated input). This is equivalent to being skew-symmetric
(i.e., ω(X1, . . . , Xk) = (−1)σω(Xσ(1), . . . , Xσ(k)) for any permutation σ on {1, 2, . . . , k})
and (−1)σ is the sign of σ: +1 for even and −1 for odd. Now that we have discussed
tensor fields I would like to shift our focus back to manifolds.
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6 Manifolds Round Two

In this section we will return to manifolds and explore ideas relating to derivation on
manifolds, orientation, manifolds with boundary, and integration on a patch.

6.1 Differentiation

Differential k-forms
Recall from earlier that a differential 1-form is a covector looking like α = aidx

i, but
this is really just a specific k-form. Further, k-forms are just a specific type of tensor:
alternating tensors. These tensors are called alternating tensors because of their
anti-symmetric property αij = −αji.

Example 6.1.1

An example is alternating 2-tensors in R3. The basis of these if given by:

β = {dy ⊗ dz − dz ⊗ dy, dz ⊗ dx− dx⊗ dz, dx⊗ dy − dy ⊗ dx}

Since these representation are rather cumbersome we can denote them, up to a
constant, as: {dy ∧ dz, dz ∧ dx, dx ∧ dy}

We can use this wedge notation to define our k-forms (on a coordinate patch U at point
p) as:

ω =
1

k!

∑
ai1···ikdx

i1 ∧ · · · ∧ dxik = aIdx
I

Note that ωp ∈
∧k(T ∗pM) which are all of the anti-symmetric tensor of type (0, k) Being

careful here: ωp ∈
∧k(T ∗pM) is an anti-symmetric = alternating tensor of type (0, k). If

we collect these for all points and let p vary, then we have a tensor field. We could also
say that ω ∈ Ωk(M) which is the vector space of all k-forms.

Example 6.1.2

In the previous example we looked at a basis for alternating 2-tensors on R3, but
here we want to look at general k-forms on R3.

Ω0(R3) = {f : R3 → R | f is smooth}
Ω1(R3) = {f dx+ g dy + h dz | f, g, h ∈ Ω0(R3)}
Ω2(R3) = {f dx ∧ dz + g dz ∧ dx+ h dx ∧ dy | f, g, h ∈ Ω0(R3)}
Ω3(R3) = {f dx ∧ dy ∧ dz | f ∈ Ω0(R3)}

Also, Ω4(R3) = {0}. Notice how Ω4(R3) makes sense looking at the way
we define the wedge product. Elements of Ω4(R3) must contain a duplicate term,
without loss of generality let it be dx here, and when we go to evaluate this part
we get dx∧ dx = dx⊗ dx− dx⊗ dx = 0 hence any k-form where k is greater than
the dimension of the space must be 0.
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One last thing to note, if we have λ as some m-form then deg(λ) = m. With a basic
grasp of k-forms now we can ask what does it mean to take the derivative of these?

The exterior derivative
The exterior derivative is a powerful extension of normal derivatives which applies to
k-forms. First, the definition:

Definition 6.1.1: The Exterior Derivative

The exterior derivative is a linear operator which uniquely maps k-forms to
(k + 1)-forms, d : Ωk(M) → Ωk+1(M). For any forms λ and µ with deg(λ) = m,
and any function f the operator d satisfies the following four properties:

1) Linear: d(λ+ µ) = dλ+ dµ
2) Graded derivation: d(λ ∧ µ) = dλ ∧ µ+ (−1)degλλ ∧ dµ
3) Nilpotent: d2λ = 0
4) Natural: In any local coordinates {xi} about a point p

df =
∑ ∂f

∂xi
dxi

From this we can see that it acts similarly to normal derivatives in many ways although
it is slightly more complicated. To help clarify the use of the external derivative here is
an example on R2:

Example 6.1.3

Taking a manifold M = R2 we want to calculate the exterior derivative on a general
1-form ~f = P dx+Q dy:

d(P dx+Q dy) = d(P dx) + d(Q dy) Linearity
= dP ∧ dx+ P ∧ d2x+ dQ ∧ dy +Q ∧ d2y Graded derivation
= dP ∧ dx+ dQ ∧ dy Nilpotent
= (Px dx+ Py dy) ∧ dx+ (Qx dx+Qy dy) ∧ dy Evaluate
= Px dx ∧ dx+ Py dy ∧ dx+Qx dx ∧ dy +Qy dy ∧ dy Distribute
= Py dy ∧ dx+Qx dx ∧ dy Wedge properties
= (Qx − Py)dx ∧ dy Wedge properties

= ∇× ~f = curl(~f ) Definitions

Using a similar calculation while working in R3 and identifying
1-forms: ω = P dx+Qdy +Rdz
2-forms: η = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy
3-forms: f dx ∧ dy ∧ dz
with vector fields F = 〈P,Q,R〉 and with a scalar valued function f , we get for a
scalar valued function df is ∇f (the gradient), dω is ∇ × F (the curl), and dη is
∇·F (the divergence).

33



For more discussion of forms and exterior derivatives see [C]. As interesting as this is
though, we still need to discuss some other things about manifolds so we will move on
to manifolds with boundaries for now.

6.2 Orientations and Manifolds with Boundary

In this section we will talk about orienting a manifold as will become relevant when we
want to integrate over manifolds. We will also tweak the definition of manifolds to
allow for them to include the boundary. Previously we had manifolds that did not
include “edge parts” that would make it impossible to use open sets to fully cover the
manifold, but in this section we must consider what happens if boundary regions are
included in the manifold. First though, let us discuss orientation.

Definition 6.2.1: Orientation

Let M be a smooth manifold of dim(M) = m. Two patches are said to be com-
patible if, over the region of their overlap, the Jacobian change of coordinates is
positive. A manifold is orientable if it can be covered by a set of patches that
are all compatible. Alternatively, we define an orientation as a non-vanishing
(ωp 6= 0 for all p ∈ M) top form ω ∈ Ωm(M). Then we say a coordinate chart is
compatible with ω if for each point p in a coordinate chart Ui we have

ωp

(
∂

∂x1

∣∣∣∣
p

. . .
∂

∂xm

∣∣∣∣
p

)
> 0

One can show that if one has an orientation form ω, then one can find an atlas of
compatible charts and vice-versa [LEE].

And now we can define a manifold with boundary after which we will put these ideas
together to understand the induced orientation on the boundary. What we will see in
the definition of a manifold with boundary is that it is identical to the smooth manifold
defined earlier except that it has one small tweak to account for the boundary.

Definition 6.2.2: Manifold with Boundary

A smooth m-dimensional manifold M with boundary is a Hausdorff topo-
logical space containing a countable collection of coordinate patches {Ui} that
cover the manifold. Additionally, as we had last time we defined manifolds, when
translated to local coordinates using its associated mapping φi every Ui must be
locally Euclidean and every pair of coordinate charts must be compatible on their
overlap. Here is the difference for manifolds with boundary: The domains of our
charts are allowed to be homeomorphic to open subsets of the upper half space
Hm = {(x1, · · · , xm)|xm ≥ 0} instead of Rm.
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To illustrate this difference let us consider an example:

Example 6.2.1

Consider a region in R2 that contains its boundary. If we consider some potential
coordinate charts we can start to get a feel for what it means to be homeomorphic
to H2.

yi

xi

yj

xj

M

Ui

Uj

φi φj

φi(Ui) φj(Uj)

Some charts like Uj will remain unchanged, but others like Ui that include the
boundary instead get mapped to part of H2 containing the x-axis boundary.

Ok, but we keep saying “boundary” without really defining it so let us nail down that
term before proceeding.

Definition 6.2.3: Boundary

The boundary of M , written ∂M , is the set of all points that get mapped to the
boundary ∂Hm of Hm: {(x1, · · · , xm)|xm = 0} in some (and thus every) chart [R].
Using slightly different wording, the boundary of M is the set of all points p ∈M
such that φi(p) ∈ ∂Hm. Notice that the boundary of an m−dimensional manifold
with boundary is itself an (m− 1)-dimensional manifold without boundary.

From this definition we can see that the boundary of each chart in Example 6.2.1 is just
a piece of R, this shouldn’t be too surprising. Now, as was promised, we will discuss the
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induced orientation.

Definition 6.2.4: Induced Orientation

To construct the induced orientation on the boundary of a manifold M begin
with an orientation of the boundary manifold: ω ∈ Ωm−1(∂M). Now smoothly
choose an “outward pointing” normal vector at each point p ∈ ∂M as follows:

Np = − ∂

∂xm

∣∣∣∣
p

∈ TpM . Finally, construct the induced orientation by using these

vectors in the “boundary direction”:

(v1, . . . , vm) 7→ ωp(Np, v1, . . . , vm−1) = ωp

(
− ∂

∂xm

∣∣∣∣
p

, v1, . . . , vm−1

)

for all p ∈ ∂M and v1, . . . , vm−1 ∈ TpM . This gives us an (m − 1)-form to orient
∂M .

See Figure 3 for a diagram of this as shown in [F].

Figure 3: A diagram of a 2-dimensional manifold with boundaries
where the outward pointing normal vectors are indicated at various
points. These show how we can extend our notion of orientation out

to include the boundary.

Now with some understanding of manifolds with boundary let us briefly discuss
integration on a patch so that we can move on to discussing the generalized Stokes
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theorem.

6.3 Calculus on Manifolds

To start with we need to define what it means to integrate over a patch. And just to
note this ahead of time, the definition I will give is not quite all there is to it, but it is
sufficient for our purposes and the details are readily available in any text that
describes integration over a patch in some form [LEE, R, F].

Definition 6.3.1: Integration on a Patch

et M be an m-dimensional manifold and (U, φ) be a coordinate chart with local
coordinates x1, · · · , xm. Further, let η = h dx1 ∧ · · · ∧ dxm ∈ Ωm(U) be an m-form
defined over U (for all p ∈ U). Then the integral of η over U is defined to be:

�
U

η =

m times�
. . .

�

φ(U)

h dx1 · · · dxm

In other words it works pretty similarly to how we would expect. Changing to another
set of coordinates also works similar to our notions of coordinate change from multi
variable calculus. Given the notation from the definition above along with another
mapping ψ of U to some {yi} coordinates we have:

�
U

η =

m times�
. . .

�

φ(U)

h dx1 · · · dxm =

m times�
. . .

�

ψ(U)

h · det

[
∂xi

∂yi

]
dy1 · · · dym

Where det
[
∂xi

∂yi

]
is the standard Jacobian determinant used in change of coordinates.

As long as we use compatible charts, this Jacobian determinant is positive and thus we
don’t need absolute values so this is the standard change of coordinates formula for
m-fold integrals as taught in a multivariable calculus course. And with this we can
finally discuss the generalized Stokes theorem!

The Generalized Stokes Theorem

Let M be an m-dimensional manifold with boundary ∂M and let ω be an (m− 1)-
form on the manifold. The Generalized Stokes Theorem states that:�

M

dω =

�
∂M

ω

In other words, integrating the (exterior) derivative of ω over the entire manifold
is equal to integrating ω over the boundary of the manifold.
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Not only is this an awesome and compact result, but it is used all over the place in
calculus 1, 2, and 3. In fact, almost all of the big theorems in calculus are really just
special cases of the Generalized Stokes Theorem. To show this I will list the big
theorems and how they are secretly all the Generalized Stokes Theorem.
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7 Examples of the Generalized Stokes Theorem

In this section we will discuss the Generalized Stokes Theorem a bit more and focus on
examples of how it is used in calculus. To start off let us just put all of these formulas
in a table, then we can start discussing examples of each.

The Fundamental Theorem of Calculus

� b

a

f ′(x)dx = f(b)− f(a)

The Fundamental Theorem of Line Integrals

�
C

∇f · d~r = f(B)− f(A)

Green’s Theorem

�
D

(
∂Q

∂x
− ∂p

∂y

)
dxdy =

�
∂D

P dx+Q dy

Stokes’ Theorem

�
S

(∇× ~f) · d ~A =

�
∂S

~f · d~̀

The Divergence Theorem

�
E

(∇ · ~f)dV =

�
∂E

(~f · n̂)dA

Table 1: The biggest theorems in calculus. Note that P and Q are each
functions of both x and y, f is a scalar field/function, and ~f is a vector field.
For the regions to integrate over: C is a smooth 1-dimensional curve starting
at A and ending at B, D is a simply connected region in R2 with boundary
oriented counter-clockwise, S is an oriented surface in R3 whose boundary is
also suitably oriented (from calculus 3), and E is a solid region in R3 with its

boundary ∂E oriented outward.

So now we can discuss examples of each of these:

7.1 The Fundamental Theorem of Calculus

In calculus 1 we learn that the Fundamental Theorem of Calculus says:

� b

a

f ′(x)dx = f(b)− f(a)

but when we get to the Generalized Stokes Theorem we realize that this is just a
special case. Specifically we have a manifold M = [a, b] with orientation η = dx and
boundary ∂M = {a, b}. Recognize that TaM = span

{
− d
dx

∣∣
a

}
we can consider the

outward facing normal on the boundary of the manifold:

dx

(
− d

dx

∣∣∣∣
a

)
= −1 and dx

(
d

dx

∣∣∣∣
b

)
= 1
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Taking into account that a is incompatible and b is compatible we can induce an
orientation that is compatible on the whole boundary:

η̃ =

{
−1 p = a

1 p = b

Now consider a 0-form ω = f such that dω = f ′(x)dx. Using this and our manifold we
can plug things into both sides of the Generalized Stokes Theorem:

Left side =

�
M

dω =

� b

a

f ′(x)dx

Right side =

�
∂M

ω =

�
{a,b}

f = −
�
{a}

f +

�
{b}
f = −f(a) + f(b)

This shows that the Fundamental Theorem of Calculus is a special case of the
Generalized Stokes Theorem when M is a 1-dimensional manifold on R and ω is a
0-form.

7.2 The Fundamental Theorem of Line Integrals

Let’s work through a specific example of the Fundamental Theorem of Line Integrals.
Consider the curve M : y = x2 with z = 1 parameterized using ~r(t) = 〈t, t2, 1〉 over
0 ≤ t ≤ 1. The boundary is then ∂M = {~r(0), ~r(1)} = {(0, 0, 1), (1, 1, 1)}. Orient this
using η = dt so that on the boundary our compatible outward pointing directions are
negative at 0 and positive at 1. Consider the 0-form f = x+ z such that df = dx+ dz.
We can apply the Generalized Stokes Theorem to this to get:

�
M

df =

�
[~r(0),~r(1)]

[fx(~r(t))dx(~r ′(t)) + fy(~r(t))dy(~r ′(t)) + fz(~r(t))dz(~r ′(t))] dt =

� 1

0

[fx(~r(t))x
′(t) + fy(~r(t))y

′(t) + fz(~r(t))z
′(t)] dt =

� 1

0

(1 + 0)dt = 1

And the other side of the theorem gives:

�
∂M

f =

�
{~r(0),~r(1)}

f = −
�
{~r(0)}

f +

�
{~r(1)}

f = −f(~r(0)) + f(~r(1)) = −1 + 2 = 1
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7.3 Stokes’ Theorem (General Case)

Consider a bounded surface S with bound-
ary ∂S in R3 as is shown to the right. Let
ω = Pdx+Qdy+Rdz be a 1-form defined
over this surface corresponding to the vec-
tor field ~F = 〈P,Q,R〉. If we parameter-
ize S using ~r(u, v) where (u, v) ∈ D then
calculus 3 tells us that the unit normal
is ~n = ~ru×~rv

|~ru×~rv | . We can define an orien-

tation on R3 and hence on S by taking
η(·, ·) = dx ∧ dy ∧ dz(~n, ·, ·).

S

∂S

~n

~T
− ~N

~n

Checking that ~r is compatible with the orientation:
η(~n,~ru, ~rv) = dx ∧ dy ∧ dz(~n,~ru, ~rv) = ~n · (~ru × ~rv) which we know is the volume of a
parallelepiped. Note that our three vectors are not coplanar and they are consistent
with the right-handed coordinate system therefore this volume is non-zero and it has
positive sign therefore the orientation is compatible. At this point we have two pieces
to calculate:

1. We can parameterize the boundary using ∂S1 : ~r(t) for a ≤ t ≤ b. This lets us

calculate the tangent and normal vectors as shown in the diagram, ~T = ~r ′/|~r ′|
and ~N = ~T ′/|~T ′|. Notice that ~N will point into the surface so we will choose − ~N
as the outward pointing normal. We can induce an orientation on the boundary
as:

η̃(·) = η(− ~N, ·) = dx ∧ dy ∧ dz(~n,− ~N, ·)

Checking the compatibility of this orientation we get

η̃(~r ′(t)) = dx ∧ dy ∧ dz(~n,− ~N,~r ′) = ~n · (− ~N × ~r ′) > 0

for similar reasons to the first orientation check we did. So now we can calculate
the first side of the equation:

�
∂S1

ω =

� b

a

ω~r(t)(~r
′(t))dt =

�
∂S1

~F · d~r

2. Since we will need this in a moment let’s calculate dω.

dω = (Ry −Qz)dy ∧ dz − (Rx − Pz)dz ∧ dx+ (Qx − Py)dx ∧ dy

Now for the other side of the equation:

�
S1

dω =

�
D

(Ry−Qz)dy∧dz(~ru, ~rv)−(Rx−Pz)dz∧dx(~ru, ~rv)+(Qx−Py)dx∧dy(~ru, ~rv)

41



Since

(dy ∧ dz)(~ru, ~rv) = det

[
yu yv
zu zv

]
= yuzv − zuyv

we can use this, and the corresponding simplifications from the other parts, to
rewrite the equation as:

�
S1

dω =

�
D

(Ry−Qz)(yuzv−zuyv)−(Rx−Pz)(zuxv−xuzv)+(Qx−Py)(xuyv−yuxv)

Since this form is a bit hard to recognize unless you are looking for it, let’s
consider the curl of ~F to get some insights.

�
D

(
∇× ~F

)
· ~n dσ =

�
D

(
∇× ~F (~r(u, v))

)
· (~ru, ~rv) dA =

�
D

det

Ry −Qz xu xv
Rx − Pz yu yv
Qx − Py zu zv

 =

�
D

(Ry −Qz)(yuzv − zuyv)− (Rx − Pz)(zuxv − xuzv) + (Qx − Py)(xuyv − yuxv)

This is what we got above so we can say that

�
S1

dω =

�
D

(
∇× ~F

)
· ~n dσ

Finally, we can combine both sides to evaluate the Generalized Stokes Theorem in this
example: �

S1

dω =

�
∂S1

ω

↓�
D

(
∇× ~F

)
· ~n dσ =

�
∂S1

~F · d~r

And this is precisely the normal calculus 3 Stokes’ Theorem.

7.4 Stokes’ Theorem Specific Example

After looking at the general way this type of example goes, let us now consider a
specific example using actual numbers:
Let our surface be S1 = x2 + y2 + z2 = 4 with z ≥ 0 and oriented up. Clearly ∂S1 gives
x2 + y2 = 4 with z = 0 and we will assume we are oriented in the counter clockwise
direction. Let ω = −ydx+ xdy + z2dz then

dω = −dy ∧ dx+ dx ∧ dy + 2zdz ∧ dz = 2dx ∧ dy
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Parameterizing S1 using spherical coordinates we get

S1 : ~r(φ, θ) = 〈2 cos(θ) sin(φ), 2 sin(θ) sin(φ), 2 cos(φ)〉

Where θ ranges from 0 to 2π and φ ranges from 0 to π/2. Using this parameterization
we can determine our vectors:

~rφ = 〈2 cos(θ) cos(φ), 2 sin(θ) cos(φ),−2 sin(φ)〉

~rθ = 〈−2 sin(θ) sin(φ), 2 cos(θ) sin(φ), 0〉

~rφ × ~rθ = 4 sin(φ)〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉

Note that the normal vector ~n = 〈cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)〉 does point
outwards. If we now consider an orientation for the surface we get

η(·, ·) = dx∧ dy ∧ dz(~n, ·, ·) = cos(θ) sin(φ)dy ∧ dz + sin(θ) sin(φ)dz ∧ dx+ cos(φ)dx∧ dy

Which simplifies to
1

2
(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

Also note that η(~rφ, ~rθ) > 0 over the domain. Now we can finally get to calculating
both sides of the equation:

1. Starting with the integral over the entire manifold:

�
S1

dω =

�
S1

2dx ∧ dy =

� 2π

0

� π/2

0

2dx ∧ dy(~rφ, ~rθ)dφdθ =

� 2π

0

� π/2

0

det

[
2 cos(θ) cos(φ) −2 sin(θ) sin(φ)
2 sin(θ) cos(φ) 2 cos(θ) sin(φ)

]
dφdθ =

� 2π

0

� π/2

0

2 · (4 sin(φ) cos(φ))dφdθ = 8π sin2(φ)
∣∣π/2
0

= 8π

2. Now for the other side. First parameterize the boundary using
∂S1 : ~r(t) = 〈2 cos(t), 2 sin(t), 0〉 then ~r ′(t) = 〈−2 sin(t), 2 cos(t), 0〉. Geometrically
we can see that −k̂ is the outward pointing normal so the induced orientation
would be

η̃(·) = η(−k̂, ·) =
1

2
xdy ∧ dz(−k̂, ·) +

1

2
ydz ∧ dx(−k̂, ·) =

x

2
dy − y

2
dx

Checking compatibility: η̃(~r ′(t)) = 2 cos(t)
2

cos(t)− 2 sin(t)
2

sin(t) = 2 > 0. Now we
can calculate the other side:
�
∂S1

ω =

� 2π

0

ω~r(t)(~r
′(t)) =

� 2π

0

(−2 sin(t) · (−2 sin(t)) + 2 cos(t) · (cos(t)))dt =
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� 2π

0

4dt = 8π

And thus we have verified Stokes’ Theorem for this example.

7.5 The Divergence Theorem (General Case)

Take our manifold to be some region E in local coordinates (x, y, z) with boundary ∂E.

Let ω = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy be a 2-form using ~F = 〈P,Q,R〉. We can
orient E, and actually all of R3 using η = dx∧ dy ∧ dz. Note that is compatible because

η
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
= det(I3) = 1 > 0. Calculating dω we get

dω = (Px +Qy +Rz)dx ∧ dy ∧ dz

Computing the integral of dω over the entire region we get:

�
E

dω =

�
E

(Px +Qy +Rz)dx ∧ dy ∧ dz
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
dV =

�
E

(Px +Qy +Rz)dV =

�
E

(
∇ · ~F

)
dV

For the other side of the theorem we will first need to parameterize the boundary,
∂E : ~r(u, v) where (u, v) ∈ D such that ~n = ~ru×~rv

|~ru×~rv | . Inducing an orientation on the

boundary we get η̃(·, ·) = η(~n, ·, ·) = dx ∧ dy ∧ dz(~n, ·, ·). Checking the compatibility we
find η̃(~ru, ~rv) = dx ∧ dy ∧ dz(~n,~ru, ~rv) = ~n · (~ru, ~rv) which is the volume of a
parallelepiped where the three vectors are not coplanar and since the coordinate system
is right handed the value must be positive. Finally we can calculate the other side of
the theorem: �

∂E

ω =

�
D

ω~r(u,v)(~ru, ~rv)dA =

�
D

P (~r(u, v))det

[
yu yv
zu zv

]
+Q(~r(u, v))det

[
zu zv
xu xv

]
+R(~r(u, v))det

[
xu xv
yu yv

]
=

�
D

det

P xu xv
Q yu yv
R zu zv

 dA =

�
D

~F · (~ru × ~rv)dA =

�
D

~F · ~n dσ

Combining both sides of the equation we get the divergence theorem:

�
E

(
∇ · ~F

)
dV =

�
D

~F · ~n dσ
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